Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(7): 275-293, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285019

RESUMO

Tithonia diversifolia is a perennial bushy plant found in South America with significant ethnopharmacological importance as an antimalarial, antidiabetic, antibacterial, and anticancer agent. The aim of the present study was to determine the cytotoxicity of the ethanolic extract from leaves of T. diversifolia (TdE) on human cancer cell lines (HCT-116, SNB-19, NCIH-460 and MCF-7), as well as the mechanism of action involved in cell death and cellular modulation of oxidative stress. The TdE exhibited significant activity with IC50 values ranging from 7.12 to 38.41 µg/ml, with HCT-116 being the most sensitive cell line. Subsequent experiments were conducted with HCT-116 cell line. TdE decreased the number of viable cells, followed by induction of apoptotic events, increase in mitochondrial membrane permeabilization, and enhanced G2/M phase of the cell cycle. Pro-oxidative effects including elevated acidic vesicular organelle formation, lipid peroxidation, and nitric oxide by-products, as well as reduced levels of intracellular glutathione and reactive oxygen species production were also observed following incubation with TdE, which may lead to DNA damage followed by apoptotic cell death. These results demonstrate the potential of TdE ethanolic leaf extraction for biological activity and enhance the importance of continuing to study natural sources of plants for the development of anticancer agents.


Assuntos
Antineoplásicos , Tithonia , Humanos , Extratos Vegetais/farmacologia , Células HCT116 , Estresse Oxidativo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Etanol , Antineoplásicos/farmacologia , Folhas de Planta
2.
J Toxicol Environ Health B Crit Rev ; 26(5): 257-274, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36967535

RESUMO

The aim of this review was to (i) acknowledge structural advantages of natural products (NPs) for designing therapeutic drugs; (ii) emphasize how wildlife conservation is socially and economically necessary for scientific and commercial progress in Brazilian regions; and (iii) show how decisions by governmental regulations exert damaging effects on safeguarding of biodiversity. Natural products (NPs) from animals (e.g.: bufadienolides as marinobufagin), plants (diterpenes: casearin X and paclitaxel; triterpenes: betulinic acid) and microorganisms (depsipeptides: geodiamolides; antraciclines: doxorubicin) are the main source of oral drugs and have innate advantages for enteral and parenteral drug design, synthesis and combinational chemistry using novel techniques, including green chemistry. NPs possess high chemical diversity, binding flexibility to biological targets, chiral centers, aliphatic systems, hydrogen-bond acceptors and donors, and/or heteroatoms, and broad-spectrum pharmacological properties, including against malign disorders. Nonetheless, all Brazilian biomes and connected ecosystems have been systemically threatened since 2019 by the following fire, deforestation, monocultures, cattle raising, mining and/or oil spills mainly as consequence of financial cuts in key institutions which oversee environmental stability for terrestrial and marine Brazilian fauna and flora. Nevertheless, natural chemical entities, broad traditional knowledge on agrobiodiversity, fishing, fire management, and pioneering processes of economic interest play a vital role for "Science of Biodiversity," which arises as business bioeconomy opportunities to convert Brazil into a self-sufficient country for production of pharmaceutical supplies, cosmeticsand foods. Hence, Brazil needs sustainable development projects supported by government and scientific input if one wishes to use the chemical and biological biodiversity to treat individuals and improve the quality of life.


Assuntos
Produtos Biológicos , Ecossistema , Animais , Bovinos , Brasil , Qualidade de Vida , Biodiversidade , Desenvolvimento de Medicamentos , Conservação dos Recursos Naturais/métodos
3.
J Toxicol Environ Health B Crit Rev ; 26(8): 417-441, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37606035

RESUMO

Buthionine sulfoximine (BSO) is a synthetic amino acid that blocks the biosynthesis of reduced glutathione (GSH), an endogenous antioxidant cellular component present in tumor cells. GSH levels have been associated with tumor cell resistance to chemotherapeutic drugs and platinum compounds. Consequently, by depleting GSH, BSO enhances the cytotoxicity of chemotherapeutic agents in drug-resistant tumors. Therefore, the aim of this study was to conduct a systematic review with meta-analysis of preclinical studies utilizing BSO in cancer treatments. The systematic search was carried out using the following databases: PubMed, Web of Science, Scopus, and EMBASE up until March 20, 2023, in order to collect preclinical studies that evaluated BSO, alone or in association, as a strategy for antineoplastic therapy. One hundred nine investigations were found to assess the cytotoxic potential of BSO alone or in combination with other compounds. Twenty-one of these met the criteria for performing the meta-analysis. The evidence gathered indicated that BSO alone exhibits cytotoxic activity. However, this compound is generally used in combination with other antineoplastic strategies, mainly chemotherapy ones, to improve cytotoxicity to carcinogenic cells and treatment efficacy. Finally, this review provides important considerations regarding BSO use in cancer treatment conditions, which might optimize future studies as a potential adjuvant antineoplastic therapeutic tool.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Butionina Sulfoximina/farmacologia , Butionina Sulfoximina/uso terapêutico , Metionina Sulfoximina/uso terapêutico , Metionina Sulfoximina/toxicidade , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
J Toxicol Environ Health A ; 86(6): 181-197, 2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36794368

RESUMO

Flavorings used in cookies, electronic cigarettes, popcorn, and breads contain approximately 30 chemical compounds, which makes it difficult to determine and correlate signs and symptoms of acute, subacute or chronic toxicity. The aim of this study was to characterize a butter flavoring chemically and subsequently examine the in vitro and in vivo toxicological profile using cellular techniques, invertebrates, and lab mammals. For the first time, the ethyl butanoate was found as the main compound of a butter flavoring (97.75%) and 24 h-toxicity assay employing Artemia salina larvae revealed a linear effect and LC50 value of 14.7 (13.7-15.7) mg/ml (R2 = 0.9448). Previous reports about higher oral doses of ethyl butanoate were not found. Observational screening with doses between 150-1000 mg/kg by gavage displayed increased amount of defecation, palpebral ptosis, and grip strength reduction, predominantly at higher doses. The flavoring also produced clinical signs of toxicity and diazepam-like behavioral changes in mice, including loss of motor coordination, muscle relaxation, increase of locomotor activity and intestinal motility, and induction of diarrhea, with deaths occurring after 48 h exposure. This substance fits into category 3 of the Globally Harmonized System. Data demonstrated that butter flavoring altered the emotional state in Swiss mice and disrupted intestinal motility, which may be a result of neurochemical changes or direct lesions in the central/peripheral nervous systems.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Camundongos , Animais , Manteiga , Aromatizantes/toxicidade , Mamíferos
5.
Drug Chem Toxicol ; : 1-9, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912194

RESUMO

Alpha-terpineol is a monoterpene alcohol found in essential oils from medicinal plants with some well-known pharmacological activities and widely used in cosmetics. However, the toxicological effects and additional pharmacological activities need to be clarified. Thus, the study evaluated the toxic, cytotoxic, genotoxic, hemolytic, and oxidative potential of alpha-terpineol in non-clinical bioassays. Different concentrations of alpha-terpineol were used in bioassays, including MTT (50, 100, 200, and 400 µg/mL), Artemia salina (6.25-400 µg/mL), Allium cepa (10, 50, and 100 µg/mL), comet assay (100, 200, and 500 µg/mL), cytokinesis-block micronucleus (100, 250, and 500 µg/mL), confocal microscopy for apoptosis quantification (100 and 500 µg/mL), hemolysis and Saccharomyces cerevisiae central disk test (10, 35, and 75 µg/mL). For the MTT test, alpha-terpineol was more cytotoxic on melanoma murine B16-F10 cells rather than macrophages. For A. salina test, alpha-terpineol showed LC50 of 68.29 and 76.36 µg/mL for 24 h and 48 h of exposure time, respectively. Meanwhile, alpha-terpineol was also cytotoxic to meristematic cells, which revealed inhibition of cellular division and mutagenic action by formation of bridges and delayed anaphases. The compound increased damage index and frequency of damage corroborated by the presence of micronuclei, bridges and nuclear buds at 500 µg/mL, but it caused neither hemolysis, oxidative damage on the S. cerevisiae nor cell death in normal fibroblasts. The findings indicate alpha-terpineol has cytotoxic potential by cytogenetic and molecular mechanisms associated with apoptosis and probable target effects against melanoma cells.

6.
J Toxicol Environ Health A ; 85(18): 750-766, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35698798

RESUMO

Stevia urticifolia Thunb. is an underexploited herb possessing bioactive flavonoids, saponins, and terpenoids. The aim of this study was to examine the antiproliferative and toxicogenetic properties of the ethyl acetate extract from Stevia urticifolia aerial parts (EtAcSur) upon Artemia salina, erythrocytes, Allium cepa and sarcoma 180 cells and fibroblasts, as well as in vivo studies on mice to determine systemic, macroscopic, and behavioral alterations and bone marrow chromosomal damage. The assessment using A. salina larvae and mouse blood cells revealed LC50 and EC50 values of 68.9 and 113.6 µg/ml, respectively. Root growth and mitosis were inhibited by EtAcSur, and chromosomal aberrations were detected only at 100 µg/ml. EtAcSur exhibited potent concentration-dependent viability reduction of S180 and L-929 cells and antioxidant capacity employing ABTS• and DPPH•. No previous in vivo studies were performed before with the EtAcSur. Signals of acute toxicity were not observed at 300 mg/kg. Physiological and toxicological investigations at 25 and 50 mg/mg/day i.p. for 8 days did not markedly change body or organ relative weights, nor patterns of spontaneous locomotor and exploratory activities. In contrast, clastogenic effects on bone marrow were found at 50 mg/mg/day. EtAcSur was found to (1) produce toxicity in microcrustaceans, (2) capacity as free radical scavenger, (3) antimitotic, cytotoxic and clastogenic activties upon vegetal and mammalian cells, and (4) lethality on both tumor and normal murine cells indistinctly. In vivo damage systemic effects were not remarkable and clinical signals of toxicity were not observed, suggesting the significant pharmacological potential of S. urticifolia for the development of antineoplastic agents.Abbreviations: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DMSO: dimethylsulfoxide; DPPH: 1,1-diphenyl-2-picrylhydrazyl; EC50: effective concentration 50%; EtAcSur: ethyl acetate extract from Stevia urticifolia aerial parts; Hb, hemoglobin; IC50: inhibitory concentration 50%; LC50,: lethal concentration 50%; MI: mitotic index; RBC, red blood cells; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.


Assuntos
Antimitóticos , Stevia , Animais , Antioxidantes/farmacologia , Mamíferos , Camundongos , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Toxicogenética
7.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745016

RESUMO

The present work aimed to characterize the exopolysaccharide obtained from water kefir grains (EPSwk), a symbiotic association of probiotic microorganisms. New findings of the technological, mechanical, and biological properties of the sample were studied. The EPSwk polymer presented an Mw of 6.35 × 105 Da. The biopolymer also showed microcrystalline structure and characteristic thermal stability with maximum thermal degradation at 250 °C. The analysis of the monosaccharides of the EPSwk by gas chromatography demonstrated that the material is composed of glucose units (98 mol%). Additionally, EPSwk exhibited excellent emulsifying properties, film-forming ability, a low photodegradation rate (3.8%), and good mucoadhesive properties (adhesion Fmax of 1.065 N). EPSwk presented cytocompatibility and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results of this study expand the potential application of the exopolysaccharide from water kefir as a potential clean-label raw material for pharmaceutical, biomedical, and cosmetic applications.


Assuntos
Kefir , Probióticos , Antibacterianos , Biopolímeros , Escherichia coli , Kefir/microbiologia , Água
8.
Food Technol Biotechnol ; 60(2): 155-165, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910269

RESUMO

Research background: Commercialization of Mauritia flexuosa (buriti) fruits in Brazil is at an early stage. Herein, we evaluate the nutritional value of pulp, peel and endocarp samples from buriti fruits, perform macroscopic and microscopic evaluations and analyze their physicochemical properties. Experimental approach: Size and mass, pH, sugar and protein contents, soluble/insoluble fiber, total titratable acidity and energy value of the samples were analyzed. Mineral profiling was performed by energy dispersive X-ray fluorescence spectrometry, and fatty acids and phytosterols were determined by gas chromatography-mass spectrometry. Samples were also submitted to differential scanning calorimetry coupled to a thermal analyzer, and microstructure, morphology, surface and viscosity were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) with copper radiation. Rheological behavior was also studied. Results and conclusions: Lyophilized pulp had higher nutritional content of minerals, proteins, carbohydrates and energy than in natura pulp. Lyophilized pulp and its by-products showed suitable yields (>17.31%) and low a w, and potassium, manganese and monounsaturated fatty acid contents. Peels showed elevated amounts of saturated and polyunsaturated fatty acids and phytosterols (ß-sitosterol and stigmasterol), and endothermic behavior. The reductions of calcium, magnesium and manganese ranging from 18.5 to 22.7% were observed following the lyophilization. Drying processes generated semi-crystalline powders. Both peels and endocarp contained higher amounts of insoluble fiber and lower contents of sugars. Similar results were obtained by microscopic morphological analysis, differential scanning calorimetry and XRD analysis. Pulp and endocarp exhibited pseudoplastic non-Newtonian behavior, and flow behavior index values were lower than 1, while peels presented dilatant behaviour. Thus, physicochemical and nutritional characterization of pulp and by-products, such as peels and endocarp, are essential to support scientific research and exploration of new sustainable products. Novelty and scientific contribution: Processing and conservation techniques, like lyophilization, maintain the good quality of nutritional contents and bioactive compounds of buriti whole fruits, and can be used to extend their shelf life, preserve alimentary characteristics and provide wider purposes and availability. Such parameters may generate income and food security for local and regional communities.

9.
Toxicol Appl Pharmacol ; 418: 115497, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744277

RESUMO

Medical reports indicate a prevalence of pain in 50% of patients with cancer. In this context, this article investigated the antinociceptive activity of α-PHE using in vivo Sarcoma-180-induced hypernociception in mice to detail its mechanism(s) of antinociception under different conditions of treatment and tumor progression. Firsty, in vitro cytotoxic action was assessed using melanoma B-16/F-10 and S-180 murine cells and colorimetric MTT assays. For in vivo studies, acute treatment with α-PHE (6.25, 12.5, 25 and 50 mg/kg orally by gavage) was performed on the 1st day after S-180 inoculation. Subacute treatments were performed for 8 days starting on the next day (early protocol) or on day 8 after S-180 inoculation (late protocol). For all procedures, mechanical nociceptive evaluations were carried out by von Frey's technique in the subaxillary region peritumoral tissue (direct nociception) and in right legs of S-180-bearing mice (indirect nociception). α-PHE showed in vitro cytotoxic action on B-16/F-10 and S-180 (CI50 values of 436.0 and 217.9 µg/mL), inhibition of in vivo tumor growth (ranging from 47.3 to 82.7%) and decreased direct (peritumoral tissue in subaxillary region) and indirect (right leg) mechanical nociception in Sarcoma 180-bearing mice with early and advanced tumors under acute or subacute conditions of treatment especially at doses of 25 and 50 mg/kg. It improved serum levels of GSH as well as diminished systemic lipid peroxidation, blood cytokines (interleukin-1ß, -4, -6, and tumor necrosis factor-α). Such outcomes highlight α-PHE as a promising lead compound that combines antinociceptive and antineoplasic properties. Its structural simplicity make it a cost-effective alternative, justifying further mechanistic investigations and the development of pharmaceutical formulations. Moreover, the protocols developed and standardized here make it possible to use Sarcoma-180 hypernociception model to evaluate the capacity of new antinociceptive molecules under conditions of cancer-related allodynia.


Assuntos
Analgésicos/farmacologia , Antineoplásicos/farmacologia , Dor do Câncer/tratamento farmacológico , Monoterpenos Cicloexânicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Sarcoma 180/tratamento farmacológico , Animais , Dor do Câncer/etiologia , Dor do Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Limiar da Dor , Sarcoma 180/complicações , Sarcoma 180/metabolismo , Sarcoma 180/patologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas
10.
Pharmacol Res ; 168: 105582, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775862

RESUMO

Chloroquine (CQ) and hydroxychloroquine (HCQ) are the most common drugs used to relieve acute and chronic inflammatory diseases. In this article, we present a review about the use of CQ and HCQ in antitumor therapies based on autophagy mechanisms. These molecules break/discontinue autophagosome-lysosome fusions in initial phases and enhance antiproliferative action of chemotherapeutics. Their sensitizing effects of chemotherapy when used as an adjuvant option in clinical trials against cancer. However, human related-MDR genes are also under risk to develop chemo or radioresistance because cancer cells have ability to throw 4-aminoquinolines out from digestive vacuoles well. Additionally, they also have antitumor mechanism unrelated to autophagy, including cell death from apoptosis and necroptosis and immunomodulatory/anti-inflammatory properties. However, the link between some anticancer mechanisms, clinical efficacy and pharmacological safety has not yet been fully defined.


Assuntos
Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Hidroxicloroquina/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Cloroquina/uso terapêutico , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Humanos , Hidroxicloroquina/uso terapêutico , Agentes de Imunomodulação/farmacologia
11.
J Toxicol Environ Health A ; 84(3): 95-111, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092495

RESUMO

Oncocalyxone A, a 1,4-benzoquinone derived from Cordia oncocalyx, exhibits anti-inflammatory, antimicrobial and antidiabetic properties. The aim of this study was to (1) examine the cytotoxic actions of oncocalyxone A on human normal and tumor cell lines and (2) determine mechanistic actions underlying effects upon leukemia cells using cellular and molecular techniques. Antiproliferative studies on cancer cell lines, peripheral blood mononuclear cells, and human erythrocytes were performed using colorimetric assays. To understand cytotoxicity, assessments were performed with HL-60 leukemia cells (8, 16.5, or 33 µM) after 24 hr incubation using light and fluorescence microscopy, trypan blue, flow cytometry, Comet assay, western blot of caspases and poly-ADP-ribose polymerase (PARP), and effects on topoisomerase I and II. Oncocalyxone A exhibited cytotoxic action upon HL-60 cells and dividing leukocytes, but minimal hemolytic action on erythrocytes. Mechanistic investigations demonstrated reduction of cell viability, loss of membrane integrity, cell shrinking, chromatin condensation, blebbings, externalization of phosphatidylserine, caspase activation, PARP cleavage, mitochondrial depolarization, and DNA damage. Pre-treatment with N-acetylcysteine 4 mM significantly reduced DNA damage and prevented membrane integrity loss. Oncocalyxone A displayed free radical dependent antileukemic activity via apoptotic pathways and induced DNA damage in HL-60 cells. Oncocalyxone A possesses structural chemical simplicity enabling it to be a cost-effective alternative. These properties justify further improvements to enhance activity and selectivity and the development of pharmaceutical formulations. Abbreviations Acridine orange, AO; ANOVA, analysis of variance; BSA, bovine serum albumin; DI, Damage Index; DMSO, dimethylsulfoxide; EC50, effective concentration 50%; EDTA, ethylenediamine tetraacetic acid; EB, ethidium bromide; HCT-116, colon carcinoma line; HL-60, promyelocytic leukemia line; IC50, inhibitory concentration 50%; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; OVCAR-8, ovarian carcinoma line; NAC, N-acetylcysteine, PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; PI, propidium iodide; PARP, poly-ADP-ribose polymerase; RPMI-1640, Roswell Park Memorial Institute medium; SF-295, glioblastoma line; ROS, reactive oxygen species; 7-AAD, 7-amino-actinomycin D; H2-DCF-DA, 7'-dichlorodihydrofluorescein diacetate.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Antraquinonas/química , Antineoplásicos/química , Células HL-60 , Humanos
12.
J Toxicol Environ Health A ; 84(11): 441-457, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641623

RESUMO

Mauritia flexuosa L., traditionally known as "buriti", exhibits chemoprotective properties including antioxidant, antithrombotic, and nutritional actions. The aim of this study was to examine the oral anti-inflammatory activity of epicarp, mesocarp and endocarp obtained from M. flexuosa fruits using in vivo models to verify physiological benefits. The anti-edematogenic action was determined using phlogistic agents to induce paw edema and peritonitis. Pro-inflammatory cytokines, cell migration of peritoneal cells, histological changes, and abdominal swelling induced by acetic acid were also investigated. Carrageenan-induced edema was found to be decreased in mice pre-treated with epicarp by 50.8%, 53.7% and 39.2% and mesocarp by 41.8%, 65.3% and 71.9% after 2, 3, and 4 hr stimuli, respectively. Edema initiated by specific agents such as compound 48/80, histamine, serotonin, and prostaglandin E2 were also reduced, and better outcomes were found against histamine-induced edema, as evidenced by the decline at all times analyzed (30-120 min) with both doses of water extract of mesocarp (500 or 1000 mg/kg). Mesocarp-pre-treatment reduced inflammatory tissue parameters such as number of peritoneal leukocytes and TNF-α levels, but only epicarp diminished abdominal pain. In summary, M. flexuosa fruits, especially mesocarp, exhibited oral physiological benefits and capacity to modify biochemical and cellular steps in the inflammatory cascade, indicating that dietary supplements containing these fruits may be combined with pharmacological tools to ameliorate or prevent diseases of inflammatory origin.


Assuntos
Anti-Inflamatórios/farmacologia , Arecaceae/química , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Edema/induzido quimicamente , Feminino , Frutas/química , Inflamação/induzido quimicamente , Inflamação/imunologia , Camundongos , Extratos Vegetais/química , Fator de Necrose Tumoral alfa/metabolismo
13.
Planta Med ; 87(1-02): 148-159, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348407

RESUMO

Casearia sylvestris is an outstanding representative of the Casearia genus. This representability comes from its distinctive chemical profile and pharmacological properties. This species is widespread from North to South America, occurring in all Brazilian biomes. Based on their morphology, 2 varieties are recognized: C. sylvestris var. sylvestris and C. sylvestris var. lingua. Despite the existence of data about their chemical composition, a deeper understanding of the specialized metabolism correlation and variation in respect to environmental factors and its repercussion over their biological activities was still pending. In this study, an UHPLC-DAD-based metabolomics approach was employed for the investigation of the chemical variation of 12 C. sylvestris populations sampled across 4 Brazilian biomes and ecotones. The correlation between infraspecific chemical variability and the cytotoxic and antioxidant activities was achieved by multivariate data analysis. The analyses showed that C. sylvestris var. lingua prevailed at Cerrado areas, and it was correlated with lower cytotoxic activity and high level of glycosylated flavonoids. Among them, narcissin and isorhamnetin-3-O-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranoside showed good correlation with the antioxidant activity. Conversely, C. sylvestris var. sylvestris prevailed at the Atlantic Forest areas, and it was associated with high cytotoxic activity and high content of clerodane diterpenoids. Different casearins showed good correlation (R2 = 0.3 - 0.70) with the cytotoxic activity. These findings highlighted the great complexity among different C. sylvestris populations, their chemical profile, and the related biological activities. Consequently, it can certainly influence the medicinal properties, as well as the quality and efficacy, of C. sylvestris phytomedicines.


Assuntos
Casearia , Diterpenos Clerodânicos , Brasil , Ecossistema , Extratos Vegetais/farmacologia
14.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 120-126, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583776

RESUMO

Citrinin (CIT) is a cytotoxic, hepatotoxic, nephrotoxic and cardiotoxic metabolite obtained from Penicillium citrinum, that has been increasingly searched as an anticancer drug candidate. In this study, we assessed the antitumor effects of citrinin, using cytogenetic biomarkers for genotoxicity in Sarcoma 180 (S-180) ascitic fluid cells of mice. Citrinin, extracted from P. citrinum acetonitrile extract, was characterized by LC-MS. Cytotoxic assessment was done through using comet (alkaline version) and micronucleus assays. In S-180 cells, CI50 of CIT was 3.77 µg/mL, while at 12.5 and 100 µg/mL, CIT was as cytotoxic as doxorubicin (2 µg/mL). At 0.5, 1.0 and 2.0 µg/mL, it induced genotoxicity and mutagenicity in S-180 cells, especially at 2 µg/mL, triggering oxidative damage similar to hydrogen peroxide (10 mM). The antitumor effects were evidenced by a marked increase in S-180 cells apoptosis and necrosis due to clastogenic and/or aneugenic cytogenetic effects (micronucleus formation), as well as by induction of nucleoplasm bridges and nuclear buds, culminating in S-180 apoptosis and necrosis. CIT has potential as drug candidate for antitumor purposesbyinvolving cytogenetic mechanisms.


Assuntos
Antineoplásicos/uso terapêutico , Citrinina/uso terapêutico , Análise Citogenética , Sarcoma 180/tratamento farmacológico , Sarcoma 180/genética , Animais , Antineoplásicos/farmacologia , Ascite/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citrinina/isolamento & purificação , Citrinina/farmacologia , Modelos Animais de Doenças , Camundongos , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Penicillium/química
15.
J Toxicol Environ Health A ; 83(13-14): 525-545, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568625

RESUMO

Caatinga flora which are found in a poor Brazilian region contain a substantial number of endemic taxa with biomedical and social importance for regional communities. This study examined the antioxidant and cytotoxic potential of 35 samples (extracts/fractions) from 12 Caatinga species and determined the antiproliferative and genotoxic action of dichloromethane fraction from Mimosa caesalpiniifolia stem bark (DC-Mca) on human and vegetal cells. Samples were assessed for chemopreventive ability, toxic effects on Artemia salina shrimp as well as cytotoxicity on tumor cell lines and erythrocytes. DC-Mca was also tested with respect to antiproliferative and genotoxic effects upon normal leukocytes and meristematic cells from A. cepa roots. Some extracts reduced free radical levels >95% and 7 samples exhibited a lethal concentration (LC) 50 < 100 µg/ml upon Artemia salina larvae. Eight samples displayed in vitro antitumor effects and three produced hemolysis. Data also demonstrated the pharmacological significance of bioactive extracts from Brazilian semi-arid region. There was no significant relationship between antioxidant, toxic, and antiproliferative activities, and that these properties were dependent upon the extractant. DC-Mca contained betulinic acid as main compound (approximately 70%), which showed higher (1) cytotoxic activity on cancer cell lines and dividing leukocytes, (2) reduced mitotic index of Allium cepa roots, and (3) induced cell cycle arrest and chromosomal bridges, thereby providing native promising sources for phytotherapy development. ABBREVIATIONS: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); AcOH: ethyl acetate; ANOVA: analysis of variance; SUS: Brazilian Unified Health System; DC-Mca: dichloromethane fraction from Mimosa caesalpiniifolia stem bark; DMSO: dimethylsulfoxide; DPPH: 1,1-diphenyl-2-picrylhydrazyl; EC50: effective concentration 50%; EtOAc: ethyl acetate; FDA: Food and Drug Administration; GC-Qms: gas chromatograph quadrupole mass spectrometer; GI: genotoxic index; HCT-116: colon carcinoma line; HL-60: promyelocytic leukemia line; HPLC: high-performance liquid chromatography; HRAPCIMS: high resolution atmospheric pressure chemical ionization mass spectrum; IC50: inhibitory concentration 50%; LC50: lethal concentration 50%; MeOH = methyl alcohol; MI: mitotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; MutI: mutagenic index; OVCAR-8 = ovarian carcinoma line; PBMC: peripheral blood mononuclear cells; RPMI-1640: Roswell Park Memorial Institute medium; SF-295: glioblastoma line; TEAC: trolox equivalent antioxidant capacity; TLC: thin-layer chromatography; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Plantas Medicinais/química , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Brasil , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Citotoxinas/química , Citotoxinas/farmacologia , Dano ao DNA , Ecossistema , Ecotoxicologia , Humanos , Cloreto de Metileno/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/classificação , Plantas Medicinais/toxicidade
16.
IUBMB Life ; 71(2): 200-212, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30394663

RESUMO

Phytol (PHY) (3,7,11,15-tetramethylhexadec-2-en-1-ol) exhibits various pharmacological properties including toxicity and cytotoxicity, and exerts antitumor activity. Owing to the urgent need of new pharmaceutical formulations for breast cancer therapy, this study aimed at the evaluation of antitumor activity of PHY in 7,12-dimethylbenzanthracene-cancer-induced animal model. Comet assay was employed to evaluate the cytogenetics, DNA repair, and antigenotoxic activities of PHY in neoplastic (breast) and non-neoplastic rodent cells (bone marrow, lymphocytes, and liver). Additionally, hematological, biochemical, histopathological, and immunohistochemical analyses were carried out in experimental animals. Thirty nonpregnant female mice (n = 5) underwent 7 weeks treatment with 6 mg/kg pro-carcinogen, PHY (4 mg/kg), and cyclophosphamide (25 mg/kg). Induction of cancer was confirmed by histopathology and immunohistochemistry for Ki-67. Results suggest that PHY exhibits low toxicity in comparison with other groups in hematological, biochemical, histopathological, and organ size parameters. Additionally, PHY showed modulatory effects on the pro-carcinogen, and induced genotoxicity and apoptosis in breast cancer cells. Furthermore, it showed a DNA damage repair capacity in mouse lymphocytes. These data indicate that PHY may have the potential as an anticancer candidate in pharmaceutical consumption. © 2018 IUBMB Life, 71(1):200-212, 2019.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Reparo do DNA/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fitol/farmacologia , 9,10-Dimetil-1,2-benzantraceno/administração & dosagem , 9,10-Dimetil-1,2-benzantraceno/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ensaio Cometa , Ciclofosfamida/farmacologia , Dano ao DNA , Esquema de Medicação , Feminino , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Locomoção/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos
17.
Toxicol Appl Pharmacol ; 380: 114692, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356931

RESUMO

Arylacetamides are widely used as synthetic intermediates to obtain medicinal substances. This work evaluated in vitro antiproliferative activity of ten 2-Chloro-N-arylacetamides on human normal and cancer cells and detailed in vivo toxicological and anticancer investigations. Initially, cytotoxic colorimetric assays were performed using tumor lines, peripheral blood mononuclear cells (PBMC) and erythrocytes. Compounds 2, 3 and 4 were tested for acute toxicity (50, 150 and 300 mg/kg) and for subacute antitumoral capacity in HCT-116 colon carcinoma-bearing xenograft mice for 15 days at 25 mg/kg/day. Most compounds revealed cytotoxic action on tumor lines and PBMC, but activity on human erythrocytes were not detected. Molecular dipole moment, lipophilicity and electronic constant of aryl substituents had effects upon in vitro antiproliferative capacity. More common in vivo acute behavioral signals with compounds 2, 3 and 4 were muscle relaxation, reduction of spontaneous locomotor activity and number of entries in closed arms and increased number of falls andtime spent in open arms, suggesting diazepam-like anxiolytic properties. Decrease of grabbing strength and overall activity were common, but palpebral ptosis and deaths occurred at 300 mg/kg only. Compounds 2 and 3 reduced colon carcinoma growth (21.2 and 27.5%, respectively, p < 0.05) without causing apparent signals of organ-specific toxicity after subacute exposure. The structural chemical simplicity of arylacetamides make them cost-effective alternatives and justifies further improvements to enhance activity, selectivity and the development of pharmaceutical formulations.


Assuntos
Acetamidas/uso terapêutico , Ansiolíticos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Acetamidas/farmacologia , Acetamidas/toxicidade , Adolescente , Adulto , Animais , Ansiolíticos/farmacologia , Ansiolíticos/toxicidade , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Adulto Jovem
18.
IUBMB Life ; 70(11): 1084-1092, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30180298

RESUMO

Mitochondria are the powerhouse of cells, which upon dysfunctions may lead to several diseases. Mycotoxins are the toxic secondary metabolites from fungi which are capable of causing diseases and death in humans and animals. They have a versatile mechanism of action in biological systems and can be used as lead compounds to treat some diseases including cancer. The present work encompasses analysis on the effects of mycotoxins on mitochondrial dysfunction. Electronic databases such as PubMed, ScienceDirect, Scopus, Web of Science, and Google Scholar were thoroughly searched for up-to-date published information associated with those mycotoxins and their effect on mitochondrial dysfunction. Findings suggest that mycotoxins such as citrinin, aflatoxin, and T-2 toxin exert multi-edged sword-like effects in test systems causing mitochondrial dysfunction. Mycotoxins can induce oxidative stress even at low concentration/dose that may be one of the major causes of mitochondrial dysfunction. On the other hand, activation of apoptotic caspases and other proteins by mycotoxins may lead to apoptotic cell death. Thus, mycotoxins-mediated mitochondrial dysfunction may be related to several chronic diseases which also makes these mycotoxins considerable as lead compounds for inducing toxic effects in cells. Their cytotoxic effects on cancer cells suggest their possible application as chemotherapeutic tools. © 2018 IUBMB Life, 70(11):1084-1092, 2018.


Assuntos
Mitocôndrias/patologia , Micotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Venenos/farmacologia , Animais , Humanos , Mitocôndrias/efeitos dos fármacos
19.
Phytother Res ; 31(2): 175-201, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27896890

RESUMO

Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Diterpenos/química , Doenças Negligenciadas/terapia , Medicina Tropical/tendências , Humanos
20.
Food Technol Biotechnol ; 55(1): 131-137, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28559742

RESUMO

The present study evaluates the acute toxicity of synthetic grape, plum and orange flavourings in root meristem cells of Allium cepa at the doses of 3.5, 7.0 and 14.0 mL/kg and exposure times of 24 and 48 h, and in bone marrow erythrocytes of mice treated orally for seven days with 0.5, 1.0, 2.0, 5.0 and 10.0 mL/kg of flavouring. The results of the plant test showed that grape, plum and orange flavourings, at both exposure times, inhibited cell division and promoted the formation of a significant number of micronuclei and mitotic spindle changes. These alterations were observed in at least one exposure time analysed, demonstrating a significant cytotoxic, genotoxic and mutagenic activity. In mouse bioassay, animals treated with 2.0, 5.0 and 10.0 mL/kg of flavouring died before the seventh day of treatment. The amounts of 0.5 and 1.0 mL/kg of the three additives were cytotoxic to erythrocytes, and treatment with the grape flavouring significantly induced the formation of micronucleated cells in the bone marrow of animals. Therefore, under the study conditions, the grape, plum and orange flavouring additives promoted significant toxicity to cells of the test systems used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA