Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 11(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509633

RESUMO

Senescent cells promote progressive tissue degeneration through the establishment of a combined inflammatory and trophic microenvironment. The cellular senescence state has therefore emerged as a central driving mechanism of numerous age-related diseases, including osteoarthritis (OA), the most common rheumatic disease. Senescence hallmarks are detectable in chondrocytes, synoviocytes and sub-chondral bone cells. This study investigates how the senescence-driven microenvironment could impact the cell fate of resident osteoarticular mesenchymal stromal/stem cells (MSCs) that are hence contributing to OA disease progression. For that purpose, we performed a comparative gene expression analysis of MSCs isolated from healthy donors that were in vitro chronically exposed either to interferon-gamma (IFN-γ) or Transforming Growth Factor beta 1 (TGFß1), two archetypical factors produced by senescent cells. Both treatments reduced MSC self-renewal capacities by upregulating different senescence-driven cycle-dependent kinase inhibitors. Furthermore, a common set of differentially expressed genes was identified in both treated MSCs that was also found enriched in MSCs isolated from OA patients. These findings highlight an imprinting of OA MSCs by the senescent joint microenvironment that changes their matrisome gene expression. Altogether, this research gives new insights into OA etiology and points to new innovative therapeutic opportunities to treat OA patients.

2.
Aging (Albany NY) ; 11(20): 9128-9146, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644429

RESUMO

Tissue accumulation of p16INK4a-positive senescent cells is associated with age-related disorders, such as osteoarthritis (OA). These cell-cycle arrested cells affect tissue function through a specific secretory phenotype. The links between OA onset and senescence remain poorly described. Using experimental OA protocol and transgenic Cdkn2a+/luc and Cdkn2aluc/luc mice, we found that the senescence-driving p16INK4a is a marker of the disease, expressed by the synovial tissue, but is also an actor: its somatic deletion partially protects against cartilage degeneration. We test whether by becoming senescent, the mesenchymal stromal/stem cells (MSCs), found in the synovial tissue and sub-chondral bone marrow, can contribute to OA development. We established an in vitro p16INK4a-positive senescence model on human MSCs. Upon senescence induction, their intrinsic stem cell properties are altered. When co-cultured with OA chondrocytes, senescent MSC show also a seno-suppressive properties impairment favoring tissue degeneration. To evaluate in vivo the effects of p16INK4a-senescent MSC on healthy cartilage, we rely on the SAMP8 mouse model of accelerated senescence that develops spontaneous OA. MSCs isolated from these mice expressed p16INK4a. Intra-articular injection in 2-month-old C57BL/6JRj male mice of SAMP8-derived MSCs was sufficient to induce articular cartilage breakdown. Our findings reveal that senescent p16INK4a-positive MSCs contribute to joint alteration.


Assuntos
Senescência Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/induzido quimicamente , Comunicação Parácrina/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Condrócitos/fisiologia , Técnicas de Cocultura , Colagenases/toxicidade , Etoposídeo/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Luciferases/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA