Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 29, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702815

RESUMO

Mapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts. First, we propose a novel experimental scheme for color TSFG microscopy, which provides simultaneous measurements at several wavelengths encompassing the Soret absorption band of hemoglobin. We show that there is a strong three-photon (3P) resonance related to the Soret band of hemoglobin in THG and TSFG signals from zebrafish and human RBCs, and that this resonance is sensitive to RBC oxygenation state. We demonstrate that our color TSFG implementation enables specific detection of flowing RBCs in zebrafish embryos and is sensitive to RBC oxygenation dynamics with single-cell resolution and microsecond pixel times. Moreover, it can be implemented on a 3P microscope and provides label-free RBC-specific contrast at depths exceeding 600 µm in live adult zebrafish brain. Our results establish a new multiphoton contrast extending the palette of deep-tissue microscopy.

2.
Elife ; 112022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166669

RESUMO

Three-photon excitation has recently been demonstrated as an effective method to perform intravital microscopy in deep, previously inaccessible regions of the mouse brain. The applicability of 3-photon excitation for deep imaging of other, more heterogeneous tissue types has been much less explored. In this work, we analyze the benefit of high-pulse-energy 1 MHz pulse-repetition-rate infrared excitation near 1300 and 1700 nm for in-depth imaging of tumorous and bone tissue. We show that this excitation regime provides a more than 2-fold increased imaging depth in tumor and bone tissue compared to the illumination conditions commonly used in 2-photon excitation, due to improved excitation confinement and reduced scattering. We also show that simultaneous 3- and 4-photon processes can be effectively induced with a single laser line, enabling the combined detection of blue to far-red fluorescence together with second and third harmonic generation without chromatic aberration, at excitation intensities compatible with live tissue imaging. Finally, we analyze photoperturbation thresholds in this excitation regime and derive setpoints for safe cell imaging. Together, these results indicate that infrared high-pulse-energy low-repetition-rate excitation opens novel perspectives for intravital deep-tissue microscopy of multiple parameters in strongly scattering tissues and organs.


Assuntos
Aprendizado Profundo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias Experimentais/diagnóstico por imagem , Microscopia de Geração do Segundo Harmônico/métodos , Animais , Osso e Ossos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA