Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 172: 14-23, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35878706

RESUMO

Cardiovascular diseases (CVDs) represent the leading cause of death globally. Despite major advances in the field of pharmacological CVD treatments, particularly in the field of heart failure (HF) research, case numbers and overall mortality remain high and have trended upwards over the last few years. Thus, identifying novel molecular targets for developing HF therapeutics remains a key research focus. G protein-coupled receptors (GPCRs) are critical myocardial signal transducers which regulate cardiac contractility, growth, adaptation and metabolism. Additionally, GPCR dysregulation underlies multiple models of cardiac pathology, and most pharmacological therapeutics currently used in HF target these receptors. Currently-approved treatments have improved patient outcomes, but therapies to stop or reverse HF are lacking. A recent focus on GPCR intracellular-regulating proteins such as GPCR kinases (GRKs) has uncovered GRK2 as a promising target for combating HF. Current literature strongly establishes increased levels and activity of GRK2 in multiple models of CVD. Additionally, the GRK2 interactome includes numerous proteins which interact with differential domains of GRK2 to modulate both beneficial and deleterious signaling pathways in the heart, indicating that these domains can be targeted with a high level of specificity unique to various cardiac pathologies. These data support the premise that GRK2 should be at the forefront of a novel investigative drug search. This perspective reviews cardiac GPCRs, describes the structure and functions of GRK2 in cardiac function and maladaptive pathology, and summarizes the ongoing and future research for targeting this critical kinase across cellular, animal and human models of cardiac dysfunction and HF.


Assuntos
Doenças Cardiovasculares , Quinase 2 de Receptor Acoplado a Proteína G , Insuficiência Cardíaca , Animais , Humanos , Doenças Cardiovasculares/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Sci Transl Med ; 15(701): eabq7839, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37343080

RESUMO

Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cardiopatias , Animais , Criança , Humanos , Camundongos , Arritmias Cardíacas , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Pirazóis/farmacologia
3.
Korean Circ J ; 50(5): 379-394, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096362

RESUMO

It is now recognized that the heart can behave as a true endocrine organ, which can modulate the function of other tissues. Emerging evidence has shown that visceral fat is one such distant organ the heart communicates with. In fact, it appears that bi-directional crosstalk between adipose tissue and the myocardium is crucial to maintenance of normal function in both organs. In particular, factors secreted from the heart are now known to influence the metabolic activity of adipose tissue and other organs, as well as modulate the release of metabolic substrates and signaling molecules from the periphery. This review summarizes current knowledge regarding primary cardiokines and adipokines involved in heart-fat crosstalk, as well as implications of their dysregulation for cardiovascular health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA