Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778229

RESUMO

BACKGROUND: Fat malabsorption in children with cystic fibrosis (CF) leads to poor nutritional status and altered colonic microbiota. This study aimed at establishing the faecal lipid profile in children with CF, and exploring associations between the faecal lipidome and microbiota. METHODS: Cross-sectional observational study with children with CF and an age-matched control group. Faecal lipidome was analysed by UHLC-HRMS and microbiota profiling by 16S rRNA amplicon sequencing. RESULTS: Among 234 identified lipid species, five lipidome clusters (LC) were obtained with significant differences in triacylglycerols (TG), diacylglycerols (DG), monoacylglycerols (MG) and fatty-acids (FA): LC1 subjects with good digestion and absorption: low TG and low MG and FA; LC2 good digestion and poor absorption: low TG and high MG and FA; LC3 Mild digestion and poor absorption: intermediate TG and high MG and FA; LC4 poor digestion and absorption: high TG and high MG and FA; LC5 outliers. Bacteroidota and Verrucomicrobiota decreased over LC1-LC4, while Proteobacteria increased. Nutritional status indicators were significantly higher in LC1 and decreased over LC2-LC4. CONCLUSION: Assessing faecal lipidome may be relevant to determine how dietary lipids are digested and absorbed. This new evidence might be a method to support targeted nutritional interventions towards reverting fat maldigestion or malabsorption. IMPACT: Lipidomic analysis enabled the identification of the lipid species related to maldigestion (triglycerides) or malabsorption (monoglycerides and fatty acids). Children with cystic fibrosis can be grouped depending on the faecal lipidome profile related to dietary fat maldigestion or malabsorption. The lipidome profile in faeces is related to the composition of microbiota and nutritional status indicators.

2.
Nutrients ; 15(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686878

RESUMO

Cystic Fibrosis-related gut dysbiosis (CFRGD) has become a recognised complication in children with this condition, and current evidence remains insufficient to guide the selection of probiotic strains for supplementation treatments. The aim of this study was to characterise the effect of three probiotic strains on CFRGD by means of a dynamic in vitro simulation of the colonic fermentation (SHIME®). The configuration of the system included three bioreactors colonised with the faecal inoculum of a child with cystic fibrosis. For 20 days, each bioreactor was supplied daily with either Lacticaseibacillus rhamnosus GG (ATCC 53103 TM), Limosilactobacillus reuteri (DSM 17938) or Lactiplantibacillus plantarum (DSM 22266). The baseline microbiota was characterised by a high abundance of Prevotella, Faecalibacterium and Acidaminococcus genera. After 20 days of supplementation, L. rhamnosus and L. plantarum reduced Prevotella significantly, and the three strains led to increased Faecalibacterium and Bifidobacterium and decreased Acidaminococcus, with some of these changes being maintained 10 days after ceasing supplementation. The metabolic activity remained unaltered in terms of short-chain fatty acids, but branched-chain fatty acids showed a significant decrease, especially with L. plantarum. Additionally, ammonia decreased at 20 days of supplementation, and lactate continuously increased with the three strains. The effects on colonic microbiota of L. rhamnosus, L. reuteri or L. plantarum were established, including increased beneficial bacteria, such as Faecalibacterium, and beneficial metabolites such as lactate; and on the other hand, a reduction in pathogenic genera, including Prevotella or Acidaminococcus and branched-chain fatty acids, overall supported their use as probiotics in the context of CFRGD.


Assuntos
Fibrose Cística , Limosilactobacillus reuteri , Microbiota , Criança , Humanos , Lactobacillaceae , Ácido Láctico , Disbiose , Faecalibacterium , Ácidos Graxos
3.
Nutrients ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140272

RESUMO

A "high-fat, high-energy diet" is commonly recommended for children with cystic fibrosis (CF), leading to negative consequences on dietary patterns that could contribute to altered colonic microbiota. The aim of this study was to assess dietary intake and to identify possible associations with the composition of faecal microbiota in a cohort of children with CF. A cross-sectional observational study was conducted, including a 3-day food record simultaneously with the collection of faecal samples. The results showed a high fat intake (43.9% of total energy intake) and a mean dietary fibre intake of 10.6 g/day. The faecal microbiota was characterised at the phylum level as 54.5% Firmicutes and revealed an altered proportion between Proteobacteria (32%) and Bacteroidota (2.2%). Significant associations were found, including a negative association between protein, meat, and fish intake and Bifidobacterium, a positive association between lipids and Escherichia/Shigella and Streptococcus, a negative association between carbohydrates and Veillonella and Klebsiella, and a positive association between total dietary fibre and Bacteroides and Roseburia. The results reveal that a "high-fat, high-energy" diet does not satisfy dietary fibre intake from healthy food sources in children with CF. Further interventional studies are encouraged to explore the potential of shifting to a high-fibre or standard healthy diet to improve colonic microbiota.


Assuntos
Fibrose Cística , Microbiota , Criança , Animais , Humanos , Dieta , Estudos Transversais , Fibras na Dieta/análise , Dieta Hiperlipídica , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA