Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pediatr Diabetes ; 22(7): 982-991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374183

RESUMO

OBJECTIVE: To develop and scale algorithm-enabled patient prioritization to improve population-level management of type 1 diabetes (T1D) in a pediatric clinic with fixed resources, using telemedicine and remote monitoring of patients via continuous glucose monitor (CGM) data review. RESEARCH DESIGN AND METHODS: We adapted consensus glucose targets for T1D patients using CGM to identify interpretable clinical criteria to prioritize patients for weekly provider review. The criteria were constructed to manage the number of patients reviewed weekly and identify patients who most needed provider contact. We developed an interactive dashboard to display CGM data relevant for the patients prioritized for review. RESULTS: The introduction of the new criteria and interactive dashboard was associated with a 60% reduction in the mean time spent by diabetes team members who remotely and asynchronously reviewed patient data and contacted patients, from 3.2 ± 0.20 to 1.3 ± 0.24 min per patient per week. Given fixed resources for review, this corresponded to an estimated 147% increase in weekly clinic capacity. Patients who qualified for and received remote review (n = 58) have associated 8.8 percentage points (pp) (95% CI = 0.6-16.9 pp) greater time-in-range (70-180 mg/dl) glucoses compared to 25 control patients who did not qualify at 12 months after T1D onset. CONCLUSIONS: An algorithm-enabled prioritization of T1D patients with CGM for asynchronous remote review reduced provider time spent per patient and was associated with improved time-in-range.


Assuntos
Algoritmos , Automonitorização da Glicemia/métodos , Diabetes Mellitus Tipo 1/terapia , Saúde da População , Medicina de Precisão/métodos , Adolescente , Glicemia/análise , Criança , Estudos de Coortes , Feminino , Hospitais Pediátricos , Humanos , Masculino , Estudos Retrospectivos , Fatores de Tempo
2.
PLoS One ; 19(6): e0304175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935807

RESUMO

PURPOSE: The Youth Risk Behavior Survey (YRBS) among high school students includes standard questions about sexual identity and sex of sexual contacts, but these questions are not consistently included in every state that conducts the survey. This study aimed to develop and apply a method to predict state-level proportions of high school students identifying as lesbian, gay, or bisexual (LGB) or reporting any same-sex sexual contacts in those states that did not include these questions in their 2017 YRBS. METHODS: We used state-level high school YRBS data from 2013, 2015, and 2017. We defined two primary outcomes relating to self-reported LGB identity and reported same-sex sexual contacts. We developed machine learning models to predict the two outcomes based on other YRBS variables, and comparing different modeling approaches. We used a leave-one-out cross-validation approach and report results from best-performing models. RESULTS: Modern ensemble models outperformed traditional linear models at predicting state-level proportions for the two outcomes, and we identified prediction methods that performed well across different years and prediction tasks. Predicted proportions of respondents reporting LGB identity in states that did not include direct measurement ranged between 9.4% and 12.9%. Predicted proportions of respondents reporting any same-sex contacts, where not directly observed, ranged between 7.0% and 10.4%. CONCLUSION: Comparable population estimates of sexual minority adolescents can raise awareness among state policy makers and the public about what proportion of youth may be exposed to disparate health risks and outcomes associated with sexual minority status. This information can help decision makers in public health and education agencies design, implement and evaluate community and school interventions to improve the health of LGB youth.


Assuntos
Minorias Sexuais e de Gênero , Humanos , Adolescente , Minorias Sexuais e de Gênero/estatística & dados numéricos , Masculino , Feminino , Estados Unidos , Comportamento Sexual/estatística & dados numéricos , Inquéritos e Questionários , Aprendizado de Máquina , Assunção de Riscos , Estudantes/estatística & dados numéricos , Estudantes/psicologia
3.
NEJM Evid ; 3(2): EVIDoa2300164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320487

RESUMO

BACKGROUND: Digital health interventions may be optimized before evaluation in a randomized clinical trial. Although many digital health interventions are deployed in pilot studies, the data collected are rarely used to refine the intervention and the subsequent clinical trials. METHODS: We leverage natural variation in patients eligible for a digital health intervention in a remote patient-monitoring pilot study to design and compare interventions for a subsequent randomized clinical trial. RESULTS: Our approach leverages patient heterogeneity to identify an intervention with twice the estimated effect size of an unoptimized intervention. CONCLUSIONS: Optimizing an intervention and clinical trial based on pilot data may improve efficacy and increase the probability of success. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT04336969.)


Assuntos
Projetos de Pesquisa , Projetos Piloto
4.
Nat Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702523

RESUMO

Few young people with type 1 diabetes (T1D) meet glucose targets. Continuous glucose monitoring improves glycemia, but access is not equitable. We prospectively assessed the impact of a systematic and equitable digital-health-team-based care program implementing tighter glucose targets (HbA1c < 7%), early technology use (continuous glucose monitoring starts <1 month after diagnosis) and remote patient monitoring on glycemia in young people with newly diagnosed T1D enrolled in the Teamwork, Targets, Technology, and Tight Control (4T Study 1). Primary outcome was HbA1c change from 4 to 12 months after diagnosis; the secondary outcome was achieving the HbA1c targets. The 4T Study 1 cohort (36.8% Hispanic and 35.3% publicly insured) had a mean HbA1c of 6.58%, 64% with HbA1c < 7% and mean time in the range (70-180 mg dl-1) of 68% at 1 year after diagnosis. Clinical implementation of the 4T Study 1 met the prespecified primary outcome and improved glycemia without unexpected serious adverse events. The strategies in the 4T Study 1 can be used to implement systematic and equitable care for individuals with T1D and translate to care for other chronic diseases. ClinicalTrials.gov registration: NCT04336969 .

5.
Endocrinol Diabetes Metab ; 6(5): e435, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345227

RESUMO

INTRODUCTION: Algorithm-enabled remote patient monitoring (RPM) programs pose novel operational challenges. For clinics developing and deploying such programs, no standardized model is available to ensure capacity sufficient for timely access to care. We developed a flexible model and interactive dashboard of capacity planning for whole-population RPM-based care for T1D. METHODS: Data were gathered from a weekly RPM program for 277 paediatric patients with T1D at a paediatric academic medical centre. Through the analysis of 2 years of observational operational data and iterative interviews with the care team, we identified the primary operational, population, and workforce metrics that drive demand for care providers. Based on these metrics, an interactive model was designed to facilitate capacity planning and deployed as a dashboard. RESULTS: The primary population-level drivers of demand are the number of patients in the program, the rate at which patients enrol and graduate from the program, and the average frequency at which patients require a review of their data. The primary modifiable clinic-level drivers of capacity are the number of care providers, the time required to review patient data and contact a patient, and the number of hours each provider allocates to the program each week. At the institution studied, the model identified a variety of practical operational approaches to better match the demand for patient care. CONCLUSION: We designed a generalizable, systematic model for capacity planning for a paediatric endocrinology clinic providing RPM for T1D. We deployed this model as an interactive dashboard and used it to facilitate expansion of a novel care program (4 T Study) for newly diagnosed patients with T1D. This model may facilitate the systematic design of RPM-based care programs.


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Humanos , Acessibilidade aos Serviços de Saúde , Monitorização Fisiológica
6.
J Clin Transl Sci ; 7(1): e179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745930

RESUMO

Introduction: Clinical trials provide the "gold standard" evidence for advancing the practice of medicine, even as they evolve to integrate real-world data sources. Modern clinical trials are increasingly incorporating real-world data sources - data not intended for research and often collected in free-living contexts. We refer to trials that incorporate real-world data sources as real-world trials. Such trials may have the potential to enhance the generalizability of findings, facilitate pragmatic study designs, and evaluate real-world effectiveness. However, key differences in the design, conduct, and implementation of real-world vs traditional trials have ramifications in data management that can threaten their desired rigor. Methods: Three examples of real-world trials that leverage different types of data sources - wearables, medical devices, and electronic health records are described. Key insights applicable to all three trials in their relationship to Data and Safety Monitoring Boards (DSMBs) are derived. Results: Insight and recommendations are given on four topic areas: A. Charge of the DSMB; B. Composition of the DSMB; C. Pre-launch Activities; and D. Post-launch Activities. We recommend stronger and additional focus on data integrity. Conclusions: Clinical trials can benefit from incorporating real-world data sources, potentially increasing the generalizability of findings and overall trial scale and efficiency. The data, however, present a level of informatic complexity that relies heavily on a robust data science infrastructure. The nature of monitoring the data and safety must evolve to adapt to new trial scenarios to protect the rigor of clinical trials.

7.
Front Endocrinol (Lausanne) ; 13: 1096325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714600

RESUMO

Algorithm-enabled patient prioritization and remote patient monitoring (RPM) have been used to improve clinical workflows at Stanford and have been associated with improved glucose time-in-range in newly diagnosed youth with type 1 diabetes (T1D). This novel algorithm-enabled care model currently integrates continuous glucose monitoring (CGM) data to prioritize patients for weekly reviews by the clinical diabetes team. The use of additional data may help clinical teams make more informed decisions around T1D management. Regular exercise and physical activity are essential to increasing cardiovascular fitness, increasing insulin sensitivity, and improving overall well-being of youth and adults with T1D. However, exercise can lead to fluctuations in glycemia during and after the activity. Future iterations of the care model will integrate physical activity metrics (e.g., heart rate and step count) and physical activity flags to help identify patients whose needs are not fully captured by CGM data. Our aim is to help healthcare professionals improve patient care with a better integration of CGM and physical activity data. We hypothesize that incorporating exercise data into the current CGM-based care model will produce specific, clinically relevant information such as identifying whether patients are meeting exercise guidelines. This work provides an overview of the essential steps of integrating exercise data into an RPM program and the most promising opportunities for the use of these data.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Adolescente , Humanos , Diabetes Mellitus Tipo 1/terapia , Hipoglicemiantes , Glicemia , Automonitorização da Glicemia , Exercício Físico , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA