Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36826401

RESUMO

Inhibitory interneurons regulate cortical circuit activity, and their dysfunction has been implicated in autism spectrum disorder (ASD). 16p11.2 microdeletions are genetically linked to 1% of ASD cases. However, few studies investigate the effects of this microdeletion on interneuron development. Using ventral telencephalic organoids derived from human induced pluripotent stem cells, we have investigated the effect of this microdeletion on organoid size, progenitor proliferation and organisation into neural rosettes, ganglionic eminence marker expression at early developmental timepoints, and expression of the neuronal marker NEUN at later stages. At early stages, deletion organoids exhibited greater variations in size with concomitant increases in relative neural rosette area and the expression of the ventral telencephalic marker COUPTFII, with increased variability in these properties. Cell cycle analysis revealed an increase in total cell cycle length caused primarily by an elongated G1 phase, the duration of which also varied more than normal. At later stages, deletion organoids increased their NEUN expression. We propose that 16p11.2 microdeletions increase developmental variability and may contribute to ASD aetiology by lengthening the cell cycle of ventral progenitors, promoting premature differentiation into interneurons.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Humanos , Transtorno do Espectro Autista/metabolismo , Telencéfalo , Neurônios/metabolismo , Interneurônios/metabolismo , Organoides
2.
Mol Psychiatry ; 24(2): 294-311, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401811

RESUMO

The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.


Assuntos
Cromossomos Humanos Par 16/genética , Transtornos Mentais/genética , NF-kappa B/metabolismo , Anormalidades Múltiplas/genética , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Proliferação de Células , Duplicação Cromossômica/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Neuroimagem/métodos , Neurônios , Organoides/fisiologia , Transdução de Sinais , Células-Tronco/fisiologia
3.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358352

RESUMO

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Assuntos
Neoplasias Colorretais , Neutrófilos , Animais , Camundongos , Humanos , Recidiva Local de Neoplasia/metabolismo , Transdução de Sinais/genética , Neoplasias Colorretais/genética , Análise de Célula Única
4.
Brain Neurosci Adv ; 7: 23982128231195514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641631

RESUMO

Professor Sir Colin Blakemore was a remarkable neuroscientist, persuasive communicator, and brave advocate for animal research who, sadly, passed away in June 2022 from amyotrophic lateral sclerosis. His work helped establish the concept of neuronal plasticity, which was fundamental to our understanding of the postnatal brain and continues to impact our outlook on neurodegenerative disorders. The BNA2023 Festival of Neuroscience dedicated its last plenary session in his honour, bringing together five prominent neuroscientists whose careers were shaped by Professor Blakemore. Here, we summarise the speakers' reflections on how Colin's support, generosity, and foresight influenced their academic paths, inspired their research, and changed their outlook on life.

5.
Chin Clin Oncol ; 12(2): 18, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37081709

RESUMO

A vital constituent of innate immunity, neutrophils had previously been considered functionally rigid with a fixed, defined role in host pathogen response, in part due to their fleeting lifespan. However, that consensus opinion has changed with evidence of functional neutrophil plasticity in a range of diseases including cancer. Typically difficult to sequence due to their low level of transcriptomic activity, advances in single cell RNA sequencing has allowed for closer examination of the neutrophil transcriptome in humans and mouse models and their interaction with other immune system constituents, both in health and disease, allowing for description of neutrophil phenotypes beyond previous descriptions reliant upon microscopic appearance, surface marker expression, and function. Transcriptomic analysis shows that neutrophils develop and mature along a fixed trajectory, but their transcriptome varies based on maturity, the insult that has provoked release from the bone marrow, and the tissue to which they are recruited. Thus neutrophil heterogeneity increases with maturity, with immature neutrophils being more transcriptomically rigid. Here, we review work done in neutrophil single cell RNA sequencing in mice and humans in health and a range of disease states including coronavirus disease 2019 (COVID-19) infection, and solid cancers to provide a template for understanding neutrophil biology in context.


Assuntos
COVID-19 , Neoplasias , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Imunidade Inata , Neoplasias/genética , Fenótipo
6.
Neurosci Biobehav Rev ; 129: 35-62, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273379

RESUMO

Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno Autístico/genética , Autopsia , Encéfalo , Cerebelo , Variações do Número de Cópias de DNA , Humanos
7.
Dev Neurobiol ; 81(5): 608-622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773072

RESUMO

Recent advances in methods for making cerebral organoids have opened a window of opportunity to directly study human brain development and disease, countering limitations inherent in non-human-based approaches. Whether freely patterned, guided into a region-specific fate or fused into assembloids, organoids have successfully recapitulated key features of in vivo neurodevelopment, allowing its examination from early to late stages. Although organoids have enormous potential, their effective use relies on understanding the extent of their limitations in accurately reproducing specific processes and components in the developing human brain. Here we review the potential of cerebral organoids to model and study human brain development and evolution and discuss the progress and current challenges in their use for reproducing specific human neurodevelopmental processes.


Assuntos
Encéfalo , Organoides , Humanos
8.
Psychiatr Genet ; 30(5): 136-140, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732550

RESUMO

BACKGROUND: Copy number variants (CNVs) are genetic rearrangements, such as deletions and duplications, which result in a deviation from the normal number of copies of a given gene segment. CNVs are implicated in many neuropsychiatric disorders. Deletions of the human chromosomal region 16p11.2 are one of the most common genetic linkages to autism spectrum disorders (ASD). However, ASD is not the only presenting feature, and many patients with 16p11.2 deletions present with a variable clinical spectrum. METHODS: To better understand the nature and presentation of the syndrome throughout development, we present three different, unrelated clinical cases of children with 16p11.2 deletion and provide a detailed description of their clinical manifestations. RESULTS: Cognitive and motor impairments were characteristic of all three patients with 16p11.2 deletion, despite the differences in the extent and clinical presentation of impairment. Two patients had a clinical diagnosis of ASD and one showed several ASD traits. In addition, two patients also had severe speech and language impairments, which is in line with previous reports on 16p11.2 phenotypes. Although epilepsy and obesity have been frequently associated with 16p11.2 deletion, only one patient had a diagnosis of epilepsy and none of the three cases were obese. CONCLUSION: This variation in clinical phenotype renders correct clinical interpretation and diagnosis challenging. Therefore, it is critical to elucidate the variable clinical phenotypes of rare CNVs, including 16p11.2 deletions, to help guide clinical monitoring and counselling of patients and families.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Masculino , Fenótipo
9.
Cell Stem Cell ; 22(5): 609-611, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727672

RESUMO

In this issue of Cell Stem Cell, Sarkar et al. (2018) describe an efficient method for the generation of human hippocampal pyramidal neurons from stem cells. They developed a compelling in vitro model that recapitulates synaptic connectivity within the hippocampus and showed that cells derived from patients with schizophrenia exhibit abnormal electrical activity.


Assuntos
Células-Tronco Pluripotentes , Esquizofrenia , Hipocampo , Humanos , Neurônios , Células Piramidais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA