Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(19): 9148-53, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24705554

RESUMO

Highly ordered TiO2 NT arrays were easily decorated with CdSe via RF magnetron sputtering. After deposition thermal annealing at different temperatures was performed to obtain an improved TiO2/CdSe interface. The heterostructures were characterized by RBS, SEM, XRD, HRTEM, UV-Vis, EIS, IPCE and current versus voltage curves. The sensitized semiconducting electrodes display an enhanced photocurrent density of ca. 2 mA cm(-2) at 0.6 V (vs. Ag/AgCl) under visible light (λ > 400 nm). The sensitized photoelectrodes displayed 3 and 535-fold enhanced photocurrent when compared to bare TiO2 NTs under 1 sun and under visible light illumination, respectively. IES results confirmed the improved charge transfer across the TiO2/CdSe/electrolyte interface after annealing at 400 °C. Incident photon-to-electron conversion efficiency measurements confirmed the efficient sensitization by allowing photoresponse in the visible range.

2.
Sci Rep ; 3: 3414, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24301257

RESUMO

In this work we demonstrate that Medium Energy Ion Scattering (MEIS) measurements in combination with Transmission Electron Microscopy (TEM) or Grazing Incidence Small Angle X-Ray Scattering (GISAXS) can provide a complete characterization of nanoparticle (NP) systems embedded into dielectric films. This includes the determination of the nanoparticle characteristics (location, size distribution and number concentration) as well as the depth distribution and concentration of the NP atomic components dispersed in the matrix. Our studies are performed considering a model case system consisting of planar arrangements of Au NPs (size range from 1 to 10 nm) containing three distinct Au concentrations embedded in a SiO2 film.

3.
Inorg Chem ; 42(15): 4738-42, 2003 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-12870966

RESUMO

The reaction of Pt(2)(dba)(3) (dba = bis-dibenzylidene acetone) dispersed in room temperature 1-n-butyl-3-methylimidazolium (BMI) hexafluorophosphate ionic liquid with molecular hydrogen (4 atm) at 75 degrees C leads to stable and isolable nanometric Pt(0) particles. The X-ray diffraction analysis (XRD) of the material indicated that it is constituted of Pt(0). Transmission electron microscopy (TEM) analysis of the particles dispersed in the ionic liquid shows the formation of [Pt(0)](n) nanoparticles of 2.0-2.5 nm in diameter. A detailed examination of the nanoparticles imbibed in the ionic liquid and their environment shows an interaction of the BMI.PF(6) ionic liquid with the Pt(0) nanoparticles. The isolated [Pt(0)](n) nanoparticles can be redispersed in the ionic liquid or in acetone or used in solventless conditions for liquid-liquid biphasic, homogeneous, or heterogeneous hydrogenation of alkenes and arenes under mild reaction conditions (75 degrees C and 4 atm). The recovered platinum nanoparticles can be reused as a solid or redispersed in the ionic liquid several times without any significant loss in catalytic activity.

4.
J Am Chem Soc ; 124(16): 4228-9, 2002 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11960449

RESUMO

1-n-Butyl-3-methylimidazolium hexafluorophosphate room-temperature ionic liquid is not only suitable as a medium for the preparation and stabilization of iridium nanoparticles but also ideal for the generation of recyclable biphasic catalytic systems for hydrogenation reactions. Thus, Ir(0) nanoparticles with a mean diameter of 2 nm have been prepared by reduction of Ir(I) dissolved in the ionic liquid with H2. This catalytic solution can be reused several times for the biphasic hydrogenation of olefins under mild reaction conditions.

5.
Chemistry ; 9(14): 3263-9, 2003 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12866070

RESUMO

Stable transition-metal nanoparticles of the type [M(0)](n) are easily accessible through the reduction of Ir(I) or Rh(III) compounds dissolved in "dry" 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid by molecular hydrogen. The formation of these [M(0)](n) nanoparticles is straightforward; they are prepared in dry ionic liquid whereas the presence of the water causes the partial decomposition of ionic liquid with the formation of phosphates, HF and transition-metal fluorides. Transmission electron microscopy (TEM) observations and X-ray diffraction analysis (XRD) show the formation of [Ir(0)](n) and [Rh(0)](n) nanoparticles with 2.0-2.5 nm in diameter. The isolated [M(0)](n) nanoparticles can be redispersed in the ionic liquid, in acetone or used in solventless conditions for the liquid-liquid biphasic, homogeneous or heterogeneous hydrogenation of arenes under mild reaction conditions (75 degrees C and 4 atm). The recovered iridium nanoparticles can be reused several times without any significant loss in catalytic activity. Unprecedented total turnover numbers (TTO) of 3509 in 32 h, for arene hydrogenation by nanoparticles catalysts, have been achieved in the reduction of benzene by the [Ir(0)](n) in solventless conditions. Contrarily, the recovered Rh(0) nanoparticles show significant agglomeration into large particles with a loss of catalytic activity. The hydrogenation of arenes containing functional groups, such as anisole, by the [Ir(0)](n) nanoparticles occurs with concomitant hydrogenolysis of the C-O bond, suggesting that these nanoparticles behave as "heterogeneous catalysts" rather than "homogeneous catalysts".

6.
Chemistry ; 10(15): 3734-40, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15281157

RESUMO

The controlled decomposition of an Ru(0) organometallic precursor dispersed in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI.PF(6)), tetrafluoroborate (BMI.BF(4)) or trifluoromethane sulfonate (BMI.CF(3)SO(3)) ionic liquids with H(2) represents a simple and efficient method for the generation of Ru(0) nanoparticles. TEM analysis of these nanoparticles shows the formation of superstructures with diameters of approximately 57 nm that contain dispersed Ru(0) nanoparticles with diameters of 2.6+/-0.4 nm. These nanoparticles dispersed in the ionic liquids are efficient multiphase catalysts for the hydrogenation of alkenes and benzene under mild reaction conditions (4 atm, 75 degrees C). The ternary diagram (benzene/cyclohexene/BMI.PF(6)) indicated a maximum of 1 % cyclohexene concentration in BMI.PF(6), which is attained with 4 % benzene in the ionic phase. This solubility difference in the ionic liquid can be used for the extraction of cyclohexene during benzene hydrogenation by Ru catalysts suspended in BMI.PF(6). Selectivities of up to 39 % in cyclohexene can be attained at very low benzene conversion. Although the maximum yield of 2 % in cyclohexene is too low for technical applications, it represents a rare example of partial hydrogenation of benzene by soluble transition-metal nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA