Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 176(4): 743-756.e17, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735633

RESUMO

Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.


Assuntos
Córtex Cerebral/citologia , Organoides/metabolismo , Animais , Evolução Biológica , Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Córtex Cerebral/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Macaca , Neurogênese/genética , Organoides/crescimento & desenvolvimento , Pan troglodytes , Células-Tronco Pluripotentes/citologia , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética
2.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
3.
Nature ; 594(7861): 77-81, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33953399

RESUMO

The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3-5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome.


Assuntos
Evolução Molecular , Genoma/genética , Genômica , Pan paniscus/genética , Filogenia , Animais , Fator de Iniciação 4A em Eucariotos/genética , Feminino , Genes , Gorilla gorilla/genética , Anotação de Sequência Molecular/normas , Pan troglodytes/genética , Pongo/genética , Duplicações Segmentares Genômicas , Análise de Sequência de DNA
4.
Nature ; 587(7833): 246-251, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177663

RESUMO

New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies1-3. For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database4 increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies5 are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus6, a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far.


Assuntos
Genoma/genética , Genômica/métodos , Alinhamento de Sequência/métodos , Software , Vertebrados/genética , Âmnio , Animais , Simulação por Computador , Genômica/normas , Haplótipos , Humanos , Controle de Qualidade , Alinhamento de Sequência/normas , Software/normas
6.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33270111

RESUMO

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Anotação de Sequência Molecular/métodos , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Epidemias , Humanos , Internet , Camundongos , Pseudogenes/genética , RNA Longo não Codificante/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Transcrição Gênica/genética
7.
Genome Res ; 29(4): 635-645, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894395

RESUMO

Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequencing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an approach that retains long range information while maintaining the advantages of short reads. Starting from ∼1 ng of high molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded short reads to be associated with their original long molecules producing a novel data type known as "Linked-Reads". This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including disease-relevant genes STRC, SMN1, and SMN2 Both Linked-Read whole-genome and whole-exome sequencing identify complex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads extend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable approach for comprehensive genome analysis that is not possible using short reads alone.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Polimorfismo Genético , Sequenciamento Completo do Genoma/métodos , Linhagem Celular , Genoma Humano , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
8.
Nature ; 535(7611): 294-8, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411634

RESUMO

Vascular and haematopoietic cells organize into specialized tissues during early embryogenesis to supply essential nutrients to all organs and thus play critical roles in development and disease. At the top of the haemato-vascular specification cascade lies cloche, a gene that when mutated in zebrafish leads to the striking phenotype of loss of most endothelial and haematopoietic cells and a significant increase in cardiomyocyte numbers. Although this mutant has been analysed extensively to investigate mesoderm diversification and differentiation and continues to be broadly used as a unique avascular model, the isolation of the cloche gene has been challenging due to its telomeric location. Here we used a deletion allele of cloche to identify several new cloche candidate genes within this genomic region, and systematically genome-edited each candidate. Through this comprehensive interrogation, we succeeded in isolating the cloche gene and discovered that it encodes a PAS-domain-containing bHLH transcription factor, and that it is expressed in a highly specific spatiotemporal pattern starting during late gastrulation. Gain-of-function experiments show that it can potently induce endothelial gene expression. Epistasis experiments reveal that it functions upstream of etv2 and tal1, the earliest expressed endothelial and haematopoietic transcription factor genes identified to date. A mammalian cloche orthologue can also rescue blood vessel formation in zebrafish cloche mutants, indicating a highly conserved role in vertebrate vasculogenesis and haematopoiesis. The identification of this master regulator of endothelial and haematopoietic fate enhances our understanding of early mesoderm diversification and may lead to improved protocols for the generation of endothelial and haematopoietic cells in vivo and in vitro.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Sequência Conservada , Epistasia Genética , Deleção de Genes , Sequências Hélice-Alça-Hélice , Hematopoese , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
9.
Genome Res ; 28(6): 780-788, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29798851

RESUMO

The critically endangered northern white rhinoceros is believed to be extinct in the wild, with the recent death of the last male leaving only two remaining individuals in captivity. Its extinction would appear inevitable, but the development of advanced cell and reproductive technologies such as cloning by nuclear transfer and the artificial production of gametes via stem cells differentiation offer a second chance for its survival. In this work, we analyzed genome-wide levels of genetic diversity, inbreeding, population history, and demography of the white rhinoceros sequenced from cryopreserved somatic cells, with the goal of informing how genetically valuable individuals could be used in future efforts toward the genetic rescue of the northern white rhinoceros. We present the first sequenced genomes of the northern white rhinoceros, which show relatively high levels of heterozygosity and an average genetic divergence of 0.1% compared with the southern subspecies. The two white rhinoceros subspecies appear to be closely related, with low genetic admixture and a divergent time <80,000 yr ago. Inbreeding, as measured by runs of homozygosity, appears slightly higher in the southern than the northern white rhinoceros. This work demonstrates the value of the northern white rhinoceros cryopreserved genetic material as a potential gene pool for saving this subspecies from extinction.


Assuntos
Conservação dos Recursos Naturais , Variação Genética/genética , Perissodáctilos/genética , Animais , Criopreservação/métodos , Endogamia , Especificidade da Espécie
10.
Genome Res ; 28(7): 1029-1038, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884752

RESUMO

The recent introductions of low-cost, long-read, and read-cloud sequencing technologies coupled with intense efforts to develop efficient algorithms have made affordable, high-quality de novo sequence assembly a realistic proposition. The result is an explosion of new, ultracontiguous genome assemblies. To compare these genomes, we need robust methods for genome annotation. We describe the fully open source Comparative Annotation Toolkit (CAT), which provides a flexible way to simultaneously annotate entire clades and identify orthology relationships. We show that CAT can be used to improve annotations on the rat genome, annotate the great apes, annotate a diverse set of mammals, and annotate personal, diploid human genomes. We demonstrate the resulting discovery of novel genes, isoforms, and structural variants-even in genomes as well studied as rat and the great apes-and how these annotations improve cross-species RNA expression experiments.


Assuntos
Genoma Humano/genética , Algoritmos , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Anotação de Sequência Molecular/métodos , RNA/genética , Ratos
11.
Genome Res ; 28(4): 448-459, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29563166

RESUMO

Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.


Assuntos
Evolução Molecular , Genoma/genética , Muridae/genética , Filogenia , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Cromossomos/genética , Cariotipagem/métodos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Retroelementos/genética , Especificidade da Espécie
12.
Bioinformatics ; 36(12): 3905-3906, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330223

RESUMO

SUMMARY: Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample's HLA genotypes. AVAILABILITY AND IMPLEMENTATION: scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Alelos , Expressão Gênica , Humanos , Análise de Sequência de RNA , Fluxo de Trabalho
13.
Nucleic Acids Res ; 47(D1): D766-D773, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357393

RESUMO

The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.


Assuntos
Bases de Dados Genéticas , Genoma Humano/genética , Genômica , Pseudogenes/genética , Animais , Biologia Computacional , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Software
14.
Genome Res ; 27(5): 686-696, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28137821

RESUMO

The American alligator, Alligator mississippiensis, like all crocodilians, has temperature-dependent sex determination, in which the sex of an embryo is determined by the incubation temperature of the egg during a critical period of development. The lack of genetic differences between male and female alligators leaves open the question of how the genes responsible for sex determination and differentiation are regulated. Insight into this question comes from the fact that exposing an embryo incubated at male-producing temperature to estrogen causes it to develop ovaries. Because estrogen response elements are known to regulate genes over long distances, a contiguous genome assembly is crucial for predicting and understanding their impact. We present an improved assembly of the American alligator genome, scaffolded with in vitro proximity ligation (Chicago) data. We use this assembly to scaffold two other crocodilian genomes based on synteny. We perform RNA sequencing of tissues from American alligator embryos to find genes that are differentially expressed between embryos incubated at male- versus female-producing temperature. Finally, we use the improved contiguity of our assembly along with the current model of CTCF-mediated chromatin looping to predict regions of the genome likely to contain estrogen-responsive genes. We find that these regions are significantly enriched for genes with female-biased expression in developing gonads after the critical period during which sex is determined by incubation temperature. We thus conclude that estrogen signaling is a major driver of female-biased gene expression in the post-temperature sensitive period gonads.


Assuntos
Jacarés e Crocodilos/genética , Sequência Conservada , Estrogênios/genética , Genoma , Transdução de Sinais , Jacarés e Crocodilos/embriologia , Animais , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Mapeamento de Sequências Contíguas , Estrogênios/metabolismo , Feminino , Masculino , Análise de Sequência de DNA , Processos de Determinação Sexual/genética , Sintenia
15.
Nucleic Acids Res ; 46(D1): D762-D769, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106570

RESUMO

The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis-12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.


Assuntos
Bases de Dados Genéticas , Genoma , Navegador , Sistemas CRISPR-Cas , Apresentação de Dados , Redes Reguladoras de Genes , Genoma Humano , Humanos , Anotação de Sequência Molecular , Terminologia como Assunto , Interface Usuário-Computador
16.
Hum Genet ; 138(7): 715-721, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31087184

RESUMO

Sequences encoding Olduvai (DUF1220) protein domains show the largest human-specific increase in copy number of any coding region in the genome and have been linked to human brain evolution. Most human-specific copies of Olduvai (119/165) are encoded by three NBPF genes that are adjacent to three human-specific NOTCH2NL genes that have been shown to promote cortical neurogenesis. Here, employing genomic, phylogenetic, and transcriptomic evidence, we show that these NOTCH2NL/NBPF gene pairs evolved jointly, as two-gene units, very recently in human evolution, and are likely co-regulated. Remarkably, while three NOTCH2NL paralogs were added, adjacent Olduvai sequences hyper-amplified, adding 119 human-specific copies. The data suggest that human-specific Olduvai domains and adjacent NOTCH2NL genes may function in a coordinated, complementary fashion to promote neurogenesis and human brain expansion in a dosage-related manner.


Assuntos
Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Transporte/genética , Genoma Humano , Receptor Notch2/genética , Genômica , Humanos , Filogenia , Domínios Proteicos
17.
Nat Methods ; 12(4): 351-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25686389

RESUMO

Speed, single-base sensitivity and long read lengths make nanopores a promising technology for high-throughput sequencing. We evaluated and optimized the performance of the MinION nanopore sequencer using M13 genomic DNA and used expectation maximization to obtain robust maximum-likelihood estimates for insertion, deletion and substitution error rates (4.9%, 7.8% and 5.1%, respectively). Over 99% of high-quality 2D MinION reads mapped to the reference at a mean identity of 85%. We present a single-nucleotide-variant detection tool that uses maximum-likelihood parameter estimates and marginalization over many possible read alignments to achieve precision and recall of up to 99%. By pairing our high-confidence alignment strategy with long MinION reads, we resolved the copy number for a cancer-testis gene family (CT47) within an unresolved region of human chromosome Xq24.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Algoritmos , Dosagem de Genes , Humanos , Neoplasias/genética
18.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319079

RESUMO

Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z chromosome scaffolds. These putative Z chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.


Assuntos
Animais Peçonhentos , Heloderma suspectum , Lagartos , Animais , Masculino , Feminino , Lagartos/genética , Cromossomos Sexuais/genética , Cariótipo , Mecanismo Genético de Compensação de Dose
19.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163099

RESUMO

Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z-chromosome scaffolds. These putative Z-chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.

20.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017776

RESUMO

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Assuntos
Cistos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Pró-Proteína Convertases/genética , Mutação de Sentido Incorreto/genética , Tunicamicina , Actinas/genética , Modelos Animais de Doenças , Fígado/patologia , Cistos/genética , Serina-Treonina Quinases TOR/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA