Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant J ; 117(4): 1179-1190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985448

RESUMO

Chloroplast biogenesis is critical for crop biomass and economic yield. However, chloroplast development is a very complicated process coordinated by cross-communication between the nucleus and plastids, and the underlying mechanisms have not been fully revealed. To explore the regulatory machinery for chloroplast biogenesis, we conducted map-based cloning of the Grandpa 1 (Gpa1) gene regulating chloroplast development in barley. The spontaneous mutation gpa1.a caused a variegation phenotype of the leaf, dwarfed growth, reduced grain yield, and increased tiller number. Genetic mapping anchored the Gpa1 gene onto 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. One gene (HORVU.MOREX.r3.2HG0213170) in the delimited region encodes a putative plastid terminal oxidase (PTOX) in thylakoid membranes, which is homologous to IMMUTANS (IM) of Arabidopsis. The IM gene is required for chloroplast biogenesis and maintenance of functional thylakoids in Arabidopsis. Using CRISPR technology and gene transformation, we functionally validated that the PTOX-encoding gene, HORVU.MOREX.r3.2HG0213170, is the causal gene of Gpa1. Gene expression and chemical analysis revealed that the carotenoid biosynthesis pathway is suppressed by the gpa1 mutation, rendering mutants vulnerable to photobleaching. Our results showed that the overtillering associated with the gpa1 mutation was caused by the lower accumulation of carotenoid-derived strigolactones (SLs) in the mutant. The cloning of Gpa1 not only improves our understanding of the molecular mechanisms underlying chloroplast biosynthesis but also indicates that the PTOX activity is conserved between monocots and dicots for the establishment of the photosynthesis factory.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Mutação , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923651

RESUMO

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a disease of durum and common wheat initiated by the recognition of pathogen-produced necrotrophic effectors (NEs) by specific wheat genes. The wheat gene Snn1 was previously cloned, and it encodes a wall-associated kinase that directly interacts with the NE SnTox1 leading to programmed cell death and ultimately the development of SNB. Here, sequence analysis of Snn1 from 114 accessions including diploid, tetraploid, and hexaploid wheat species revealed that some wheat lines possess two copies of Snn1 (designated Snn1-B1 and Snn1-B2) approximately 120 kb apart. Snn1-B2 evolved relatively recently as a paralog of Snn1-B1, and both genes have undergone diversifying selection. Three point mutations associated with the formation of the first SnTox1-sensitive Snn1-B1 allele from a primitive wild wheat were identified. Four subsequent and independent SNPs, three in Snn1-B1 and one in Snn1-B2, converted the sensitive alleles to insensitive forms. Protein modeling indicated these four mutations could abolish Snn1-SnTox1 compatibility either through destabilization of the Snn1 protein or direct disruption of the protein-protein interaction. A high-throughput marker was developed for the absent allele of Snn1, and it was 100% accurate at predicting SnTox1-insensitive lines in both durum and spring wheat. Results of this study increase our understanding of the evolution, diversity, and function of Snn1-B1 and Snn1-B2 genes and will be useful for marker-assisted elimination of these genes for better host resistance.

3.
Phytopathology ; : PHYTO06230192R, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37913750

RESUMO

The Hessian fly (HF), Mayetiola destructor (Diptera: Cecidomyiidae), is one of the most devastating insect pests of cereals including wheat, barley, and rye. Although wheat is the preferred host for HF, this continuously evolving pest has been emerging as a threat to barley production. However, characterization and identification of genetic resistance to HF has not been conducted in barley. In the present study, we used a genome-wide association study (GWAS) to identify barley resistance loci to HF using a geographically diverse set of 234 barley accessions. The results showed that around 90% of barley lines were highly susceptible, indicating a significant vulnerability to HF in barley, and a total of 29 accessions were resistant, serving as potential resistance resources. GWAS with a mixed linear model revealed two marker-trait associations, both on chromosome 4H. The resistance loci and associated markers will facilitate barley improvement and development for breeders. In addition, our results are fundamental for genetic studies to understand the HF resistance mechanism in barley.

4.
Theor Appl Genet ; 136(5): 118, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103563

RESUMO

KEY MESSAGE: Genetic characterization of a major spot form net blotch susceptibility locus to using linkage mapping to identify a candidate gene and user-friendly markers in barley. Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is an economically important foliar diseases in barley. Although various resistance loci have been identified, breeding for SFNB-resistant varieties has been hampered due to the complex virulence profile of Ptm populations. One resistance locus in the host may be effective against one specific isolate, but it may confer susceptibility to other isolates. A major susceptibility QTL on chromosome 7H, named Sptm1, was consistently identified in many studies. In the present study, we conduct fine mapping to localize Sptm1 with high resolution. A segregating population was developed from selected F2 progenies of the cross Tradition (S) × PI 67381 (R), in which the disease phenotype was determined by the Sptm1 locus alone. Disease phenotypes of critical recombinants were confirmed in the following two consecutive generations. Genetic mapping anchored the Sptm1 gene to an ⁓400 kb region on chromosome 7H. Gene prediction and annotation identified six protein-coding genes in the delimited Sptm1 region, and the gene encoding a putative cold-responsive protein kinase was selected as a strong candidate. Therefore, providing fine localization and candidate of Sptm1 for functional validation, our study will facilitate the understanding of susceptibility mechanism underlying the barley-Ptm interaction and offers a potential target for gene editing to develop valuable materials with broad-spectrum resistance to SFNB.


Assuntos
Hordeum , Locos de Características Quantitativas , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal
5.
Theor Appl Genet ; 136(1): 20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683081

RESUMO

KEY MESSAGE: Fifteen and eleven loci, with most loci being novel, were identified to associate with seedling and adult resistances, respectively, to the durum-specific races of leaf rust pathogen in cultivated emmer. Leaf rust, caused by Puccinia triticina (Pt), constantly threatens durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum) production worldwide. A Pt race BBBQD detected in California in 2009 poses a potential threat to durum production in North America because resistance source to this race is rare in durum germplasm. To find new resistance sources, we assessed a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for seedling resistance to BBBQD and for adult resistance to a mixture of durum-specific races BBBQJ, CCMSS, and MCDSS in the field, and genotyped the panel using genotype-by-sequencing (GBS) and the 9 K SNP (Single Nucleotide Polymorphism) Infinium array. The results showed 24 and nine accessions consistently exhibited seedling and adult resistance, respectively, with two accessions providing resistance at both stages. We performed genome-wide association studies using 46,383 GBS and 4,331 9 K SNP markers and identified 15 quantitative trait loci (QTL) for seedling resistance located mostly on chromosomes 2B and 6B, and 11 QTL for adult resistance on 2B, 3B and 6A. Of these QTL, one might be associated with leaf rust resistance (Lr) gene Lr53, and two with the QTL previously reported in durum or hexaploid wheat. The remaining QTL are potentially associated with new Lr genes. Further linkage analysis and gene cloning are necessary to identify the causal genes underlying these QTL. The emmer accessions with high levels of resistance will be useful for developing mapping populations and adapted durum germplasm and varieties with resistance to the durum-specific races.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Triticum/genética , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Doenças das Plantas/genética , Plântula/genética
6.
Phytopathology ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079375

RESUMO

Fusarium head blight (FHB) is a destructive disease of small grains. The disease is predominantly caused by the haploid ascomycete fungus Fusarium graminearum in North America. To understand the genetics of quantitative traits for sensitivity to fungicides in this fungal pathogen, we conducted a genome-wide association study (GWAS) of sensitivity to two demethylation inhibition (DMI) class fungicides, tebuconazole and prothioconazole, using a F. graminearum population of 183 isolates collected between 1981 and 2013 from North Dakota. Baseline sensitivity to tebuconazole and prothioconazole was established using 21 isolates collected between 1981 and 1994. Most fungal isolates were sensitive to both tebuconazole and prothioconazole, however, five isolates showed significantly reduced sensitivity to prothioconazole. GWAS identified one significant marker-trait association (MTA) on chromosome 3 for tebuconazole resistance while six significant MTAs, one on chromosome 1, three on chromosome 2, and two on chromosome 4, were detected for prothioconazole resistance. Functional annotation of the MTA for tebuconazole revealed a candidate gene encoding a basic helix loop helix (bHLH) domain containing protein that reinforces sterol in the fungal membrane. Putative genes for prothioconazole resistance were also identified, which are involved in RNAi, detoxification by ubiquitin-proteasome pathway, and membrane integrity reinforcement. Considering the potential of the pathogen towards overcoming chemical control, continued monitoring of fungal sensitivities to commercially applied fungicides, especially those containing prothioconazole, is warranted to reduce risks of fungicide resistance in the pathogen populations.

7.
Phytopathology ; 113(7): 1307-1316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36721375

RESUMO

Six quantitative trait loci (QTLs) for adult plant resistance against oat crown rust (Puccinia coronata f. sp. avenae) were identified from mapping three recombinant inbred populations. Using genotyping-by-sequencing with markers called against the OT3098 v1 reference genome, the QTLs were mapped on six different chromosomes: Chr1D, Chr4D, Chr5A, Chr5D, Chr7A, and Chr7C. Composite interval mapping with marker cofactor selection showed that the phenotypic variance explained by all identified QTLs for coefficient of infection range from 12.2 to 46.9%, whereas heritability estimates ranged from 0.11 to 0.38. The significant regions were narrowed down to intervals of 3.9 to 25 cM, equivalent to physical distances of 11 to 133 Mb. At least two flanking single-nucleotide polymorphism markers were identified within 10 cM of each QTL that could be used in marker-assisted introgression, pyramiding, and selection. The additive effects of the QTLs in each population were determined using single-nucleotide polymorphism haplotype data, which showed a significantly lower coefficient of infection in lines homozygous for the resistant alleles. Analysis of pairwise linkage disequilibrium also revealed high correlation of markers and presence of linkage blocks in the significant regions. To further facilitate marker-assisted breeding, polymerase chain reaction allelic competitive extension (PACE) markers for the adult plant resistance loci were developed. Putative candidate genes were also identified in each of the significant regions, which include resistance gene analogs that encode for kinases, ligases, and predicted receptors of avirulence proteins from pathogens.


Assuntos
Avena , Basidiomycota , Avena/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Resistência à Doença/genética
8.
Plant J ; 106(6): 1674-1691, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33825238

RESUMO

The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37-rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.


Assuntos
Alelos , Evolução Biológica , Variação Genética , Proteínas de Plantas/metabolismo , Tetraploidia , Triticum/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Haplótipos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Puccinia
9.
Theor Appl Genet ; 135(10): 3307-3321, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029319

RESUMO

KEY MESSAGE: We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance. Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Avena/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Puccinia
10.
Theor Appl Genet ; 135(10): 3597-3609, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36065067

RESUMO

KEY MESSAGE: Pathogen and host genetics were used to uncover an inverse gene-for-gene interaction where virulence genes from the pathogen Pyrenophora teres f. maculata target barley susceptibility genes, resulting in disease. Although models have been proposed to broadly explain how plants and pathogens interact and coevolve, each interaction evolves independently, resulting in various scenarios of host manipulation and plant defense. Spot form net blotch is a foliar disease of barley caused by Pyrenophora teres f. maculata. We developed a barley population (Hockett × PI 67381) segregating for resistance to a diverse set of P. teres f. maculata isolates. Quantitative trait locus analysis identified major loci on barley chromosomes (Chr) 2H and 7H associated with resistance/susceptibility. Subsequently, we used avirulent and virulent P. teres f. maculata isolates to develop a pathogen population, identifying two major virulence loci located on Chr1 and Chr2. To further characterize this host-pathogen interaction, progeny from the pathogen population harboring virulence alleles at either the Chr1 or Chr2 locus was phenotyped on the Hockett × PI 67381 population. Progeny harboring only the Chr1 virulence allele lost the barley Chr7H association but maintained the 2H association. Conversely, isolates harboring only the Chr2 virulence allele lost the barley Chr2H association but maintained the 7H association. Hockett × PI 67381 F2 individuals showed susceptible/resistant ratios not significantly different than 15:1 and results from F2 inoculations using the single virulence genotypes were not significantly different from a 3:1 (S:R) ratio, indicating two dominant susceptibility genes. Collectively, this work shows that P. teres f. maculata virulence alleles at the Chr1 and Chr2 loci are targeting the barley 2H and 7H susceptibility alleles in an inverse gene-for-gene manner to facilitate colonization.


Assuntos
Ascomicetos , Hordeum , Hordeum/genética , Humanos , Doenças das Plantas/genética , Locos de Características Quantitativas
11.
Theor Appl Genet ; 135(12): 4409-4419, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201026

RESUMO

KEY MESSAGE: We identified and integrated the novel FHB-resistant Fhb7The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived (Thinopyrum elongatum, genome EE) Fhb7 allele, designated Fhb7The2, was identified and integrated into the wheat B genome through a small 7B-7E translocation (7BS·7BL-7EL) involving the terminal regions of the long arms. Fhb7The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum-derived Fhb7 allele Fhb7Thp. This will further improve the utility of Fhb7The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7The2, Fhb7Thp, and another Th. elongatum-derived Fhb7 allele Fhb7The1, which led to seven amino acid conversions in Fhb7The2, Fhb7Thp, and Fhb7The1, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7The2. The 7EL segment containing Fhb7The2 in the translocation chromosome 7BS·7BL-7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.


Assuntos
Fusarium , Triticum , Triticum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Poaceae/genética
12.
BMC Plant Biol ; 21(1): 134, 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711931

RESUMO

BACKGROUND: Providing the photosynthesis factory for plants, chloroplasts are critical for crop biomass and economic yield. However, chloroplast development is a complicated process, coordinated by the cross-communication between the nucleus and plastids, and the underlying biogenesis mechanism has not been fully revealed. Variegation mutants have provided ideal models to identify genes or factors involved in chloroplast development. Well-developed chloroplasts are present in the green tissue areas, while the white areas contain undifferentiated plastids that are deficient in chlorophyll. Unlike albino plants, variegation mutants survive to maturity and enable investigation into the signaling pathways underlying chloroplast biogenesis. The allelic variegated mutants in barley, grandpa 1 (gpa1), have long been identified but have not been genetically characterized. RESULTS: We characterized and genetically analyzed the grandpa1.a (gpa1.a) mutant. The chloroplast ultrastructure was evaluated using transmission electron microscopy (TEM), and it was confirmed that chloroplast biogenesis was disrupted in the white sections of gpa1.a. To determine the precise position of Gpa1, a high-resolution genetic map was constructed. Segregating individuals were genotyped with the barley 50 k iSelect SNP Array, and the linked SNPs were converted to PCR-based markers for genetic mapping. The Gpa1 gene was mapped to chromosome 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. In the variegated gpa1.a mutant, we identified a large deletion in this gene cluster that eliminates a putative plastid terminal oxidase (PTOX). CONCLUSIONS: Here we characterized and genetically mapped the gpa1.a mutation causing a variegation phenotype in barley. The PTOX-encoding gene in the delimited region is a promising candidate for Gpa1. Therefore, the present study provides a foundation for the cloning of Gpa1, which will elevate our understanding of the molecular mechanisms underlying chloroplast biogenesis, particularly in monocot plants.


Assuntos
Cloroplastos/genética , Cloroplastos/ultraestrutura , Cor , Hordeum/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Hordeum/crescimento & desenvolvimento , Mutação , Fenótipo
13.
BMC Genomics ; 21(1): 557, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795254

RESUMO

BACKGROUND: A sustainable breeding program requires a minimum level of germplasm diversity to provide varied options for the selection of new breeding lines. To maximize genetic gain of the North Dakota State University (NDSU) flax breeding program, we aimed to increase the genetic diversity of its parental stocks by incorporating diverse genotypes. For this purpose, we analyzed the genetic diversity, linkage disequilibrium, and population sub-structure of 350 globally-distributed flax genotypes with 6200 SNP markers. RESULTS: All the genotypes tested clustered into seven sub-populations (P1 to P7) based on the admixture model and the output of neighbor-joining (NJ) tree analysis and principal coordinate analysis were in line with that of structure analysis. The largest sub-population separation arose from a cluster of NDSU/American genotypes with Turkish and Asian genotypes. All sub-populations showed moderate genetic diversity (average H = 0.22 and I = 0.34). The pairwise Fst comparison revealed a great degree of divergence (Fst > 0.25) between most of the combinations. A whole collection mantel test showed significant positive correlation (r = 0.30 and p < 0.01) between genetic and geographic distances, whereas it was non-significant for all sub-populations except P4 and P5 (r = 0.251, 0.349 respectively and p < 0.05). In the entire collection, the mean linkage disequilibrium was 0.03 and it decayed to its half maximum within < 21 kb distance. CONCLUSIONS: To maximize genetic gain, hybridization between NDSU stock (P5) and Asian individuals (P6) are potentially the best option as genetic differentiation between them is highest (Fst > 0.50). In contrast, low genetic differentiation between P5 and P2 may enhance the accumulation of favorable alleles for oil and fiber upon crossing to develop dual purpose varieties. As each sub-population consists of many genotypes, a Neighbor-Joining tree and kinship matrix assist to identify distantly related genotypes. These results also inform genotyping decisions for future association mapping studies to ensure the identification of a sufficient number of molecular markers to tag all linkage blocks.


Assuntos
Linho , Linho/genética , Variação Genética , Genótipo , Humanos , Desequilíbrio de Ligação , Melhoramento Vegetal
14.
Theor Appl Genet ; 133(12): 3455-3467, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32930833

RESUMO

KEY MESSAGE: We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Genoma de Planta , Recombinação Homóloga , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Aegilops/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
15.
Theor Appl Genet ; 133(8): 2363-2375, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32436020

RESUMO

KEY MESSAGE: A total of 19 meta-QTL conferring resistance to tan spot were identified from 104 initial QTL detected in 15 previous QTL mapping studies. Tan spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is a major foliar disease worldwide in both bread wheat and durum wheat and can reduce grain yield due to reduction in photosynthetic area of leaves. Developing and growing resistant cultivars is a cost-effective and environmentally friendly approach to mitigate negative effects of the disease. Understanding the genetic basis of tan spot resistance can enhance the development of resistant cultivars. With that goal, over 100 QTL associated with resistance to tan spot induced by a variety of Ptr races and isolates have been identified from previous QTL mapping studies. Meta-QTL analysis can identify redundant QTL among various studies and reveal major QTL for targeting in marker-assisted selection applications. In this study, we performed a meta-QTL analysis of tan spot resistance using the reported QTL from 15 previous QTL mapping studies. An integrated linkage map with a total length of 4080.5 cM containing 47,309 markers was assembled from 21 individual linkage maps and three previously published consensus maps. Nineteen meta-QTL were clustered from 104 initial QTL projected on the integrated map. Three of the 19 meta-QTL located on chromosomes 2A, 3B, and 5A show large genetic effects and confer resistance to multiple races in multiple bread wheat and durum wheat mapping populations. The integration of those race-nonspecific QTL is a promising strategy to provide high and stable resistance to tan spot in wheat.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Triticum/genética , Ascomicetos/isolamento & purificação , Genes de Plantas , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/metabolismo , Triticum/microbiologia
16.
Theor Appl Genet ; 133(7): 2227-2237, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32300825

RESUMO

KEY MESSAGE: Resistance to tan spot in durum wheat involves race-nonspecific QTL and necrotrophic insensitivity gene. Tan spot, caused by the necrotrophic fungus Pyrenophoratritici-repentis, is a major foliar disease on all cultivated wheat crops worldwide. Compared to common wheat, much less work has been done to investigate the genetic basis of tan spot resistance in durum. Here, we conducted disease evaluations, necrotrophic effector (NE) sensitivity assays and a genome-wide association study using a collection of durum accessions. The durum panel segregated for the reaction to disease inoculations and NE infiltrations with eighteen accessions being highly resistant to all races and most of them insensitive to both PtrToxA and PtrToxB. Over 65,000SNP markers were developed from genotyping-by-sequencing for the association mapping. As expected, sensitivity to PtrToxA and PtrToxB was mapped to the chromosome arms 5BL and 2BS, respectively. For the fungal inoculations, a quantitative trait locus (QTL) on chromosome 3B was associated with resistance to all races and likely corresponds to the race-nonspecific resistance QTL previously identified in common wheat. The Tsn1locus was not significantly associated with tan spot caused by the PtrToxA-producing isolates Pti2 and 86-124, but the Tsc2 locus was significantly associated with tan spot caused by the PtrToxB-producing isolate DW5. Another QTL on chromosome arm 1AS was associated with tan spot caused by the PtrToxC-producing isolate Pti2 and likely corresponds to the Tsc1 locus. Additional QTL for specific races was identified on chromosome 1B and 3B. Our work highlights the complexity of genetic resistance to tan spot and further confirms that the Ptr ToxA-Tsn1 interaction plays no significant role in disease development in tetraploid wheat.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
17.
Theor Appl Genet ; 133(4): 1277-1289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970450

RESUMO

KEY MESSAGE: We performed homoeologous recombination-based partitioning and physical mapping of wheat chromosome 3B and Th. elongatum chromosome 3E, providing a unique physical framework of this homoeologous pair for genome studies. The wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) and Thinopyrum elongatum (2n = 2x = 14, EE) genomes can be differentiated from each other by fluorescent genomic in situ hybridization (FGISH) as well as molecular markers. This has facilitated homoeologous recombination-based partitioning and engineering of their genomes for physical mapping and alien introgression. Here, we constructed a special wheat genotype, which was double monosomic for wheat chromosome 3B and Th. elongatum chromosome 3E and homozygous for the ph1b mutant, to induce 3B-3E homoeologous recombination. Totally, 81 3B-3E recombinants were recovered and detected in the primary, secondary, and tertiary homoeologous recombination cycles by FGISH. Comparing to the primary recombination, the secondary and tertiary recombination shifted toward the proximal regions due to the increase in homology between the pairing partners. The 3B-3E recombinants were genotyped by high-throughput wheat 90-K single nucleotide polymorphism (SNP) arrays and their recombination breakpoints physically mapped based on the FGISH patterns and SNP results. The 3B-3E recombination physically partitioned chromosome 3B into 38 bins, and 429 SNPs were assigned to the distinct bins. Integrative analysis of FGISH and SNP results led to the construction of a composite bin map for chromosome 3B. Additionally, we developed 22 SNP-derived semi-thermal asymmetric reverse PCR markers specific for chromosome 3E and constructed a comparative map of homoeologous chromosomes 3E, 3B, 3A, and 3D. In summary, this work provides a unique physical framework for further studies of the 3B-3E homoeologous pair and diversifies the wheat genome for wheat improvement.


Assuntos
Cromossomos de Plantas/genética , Recombinação Homóloga/genética , Mapeamento Físico do Cromossomo , Poaceae/genética , Triticum/genética , Pontos de Quebra do Cromossomo , Polimorfismo de Nucleotídeo Único/genética
18.
Theor Appl Genet ; 133(2): 433-442, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31720702

RESUMO

KEY MESSAGE: A total of 12 QTL conferring resistance to tan spot induced by a race 2 isolate, 86-124, were identified in three tetraploid wheat mapping populations. Durum is a tetraploid species of wheat and an important food crop. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is a major foliar disease of both tetraploid durum wheat and hexaploid bread wheat. Understanding the Ptr-wheat interaction and identifying major QTL can facilitate the development of resistant cultivars and effectively mitigate the negative effect of this disease. Over 100 QTL have already been discovered in hexaploid bread wheat, whereas few mapping studies have been conducted in durum wheat. Utilizing resistant resources and identifying novel resistant loci in tetraploid wheat will be beneficial for the development of tan spot-resistant durum varieties. In this study, we evaluated four interconnected tetraploid wheat populations for their reactions to the race 2 isolate 86-124, which produces Ptr ToxA. Tsn1, the wheat gene that confers sensitivity to Ptr ToxA, was not associated with tan spot severity in any of the four populations. We found a total of 12 tan spot-resistant QTL among the three mapping populations. The QTL located on chromosomes 3A and 5A were detected in multiple populations and co-localized with race-nonspecific QTL identified in other mapping studies. Together, these QTL can confer high levels of resistance and can be used for the improvement in tan spot resistance in both hexaploid bread and durum wheat breeding. Two QTL on chromosomes 1B and 7A, respectively, were found in one population when inoculated with a ToxA knockout strain 86-124ΔToxA only, indicating that their association with tan spot was induced by other unidentified necrotrophic effectors, but under the absence of Ptr ToxA. In addition to removal of the known dominant susceptibility genes, integrating major race-nonspecific resistance loci like the QTL identified on chromosome 3A and 5A in this study could confer high and stable tan spot resistance in durum wheat.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/fisiologia , Técnicas de Inativação de Genes , Genes de Plantas , Ligação Genética , Genótipo , Micotoxinas , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Tetraploidia , Triticum/metabolismo
19.
Phytopathology ; 110(2): 440-446, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31609681

RESUMO

Spot blotch (SB) caused by Bipolaris sorokiniana and powdery mildew (PM) caused by Blumeria graminis f. sp. hordei are two important diseases of barley. To map genetic loci controlling susceptibility and resistance to these diseases, a mapping population consisting of 138 recombinant inbred lines (RILs) was developed from the cross between Bowman and ND5883. A genetic map was constructed for the population with 852 unique single nucleotide polymorphism markers generated by sequencing-based genotyping. Bowman and ND5883 showed distinct infection responses at the seedling stage to two isolates (ND90Pr and ND85F) of Bipolaris sorokiniana and one isolate (Race I) of Blumeria graminis f. sp. hordei. Genetic analysis of the RILs revealed that one major gene (Scs6) controls susceptibility to Bipolaris sorokiniana isolate ND90Pr, and another major gene (Mla8) confers resistance to Blumeria graminis f. sp. hordei isolate Race I, respectively. Scs6 was mapped on chromosome 1H of Bowman, as previously reported. Mla8 was also mapped to the short arm of 1H, which was tightly linked but not allelic to the Rcs6/Scs6 locus. Quantitative trait locus (QTL) analysis identified two QTLs, QSbs-1H-P1 and QSbs-7H-P1, responsible for susceptibility to spot blotch caused by Bipolaris sorokiniana isolate ND85F in ND5883, which are located on chromosome 1H and 7H, respectively. QSbs-7H-P1 was mapped to the same region as Rcs5, whereas QSbs-1H-P1 may represent a novel allele conferring seedling stage susceptibility to isolate ND85F. Identification and molecular mapping of the loci for SB susceptibility and PM resistance will facilitate development of barley cultivars with resistance to the diseases.


Assuntos
Ascomicetos , Hordeum , Mapeamento Cromossômico , Resistência à Doença , Genótipo , Doenças das Plantas
20.
BMC Plant Biol ; 18(1): 142, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986667

RESUMO

BACKGROUND: Switchgrass breeders need to improve the rates of genetic gain in many bioenergy-related traits in order to create improved cultivars that are higher yielding and have optimal biomass composition. One way to achieve this is through genomic selection. However, the heritability of traits needs to be determined as well as the accuracy of prediction in order to determine if efficient selection is possible. RESULTS: Using five distinct switchgrass populations comprised of three lowland, one upland and one hybrid accession, the accuracy of genomic predictions under different cross-validation strategies and prediction methods was investigated. Individual genotypes were collected using GBS while kin-BLUP, partial least squares, sparse partial least squares, and BayesB methods were employed to predict yield, morphological, and NIRS-based compositional data collected in 2012-2013 from a replicated Nebraska field trial. Population structure was assessed by F statistics which ranged from 0.3952 between lowland and upland accessions to 0.0131 among the lowland accessions. Prediction accuracy ranged from 0.57-0.52 for cell wall soluble glucose and fructose respectively, to insignificant for traits with low repeatability. Ratios of heritability across to within-population ranged from 15 to 0.6. CONCLUSIONS: Accuracy was significantly affected by both cross-validation strategy and trait. Accounting for population structure with a cross-validation strategy constrained by accession resulted in accuracies that were 69% lower than apparent accuracies using unconstrained cross-validation. Less accurate genomic selection is anticipated when most of the phenotypic variation exists between populations such as with spring regreening and yield phenotypes.


Assuntos
Metabolismo Energético/genética , Panicum/genética , Característica Quantitativa Herdável , Estudos de Associação Genética , Genética Populacional , Genoma de Planta/genética , Genótipo , Panicum/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA