Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Langmuir ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291829

RESUMO

This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.

2.
Biomacromolecules ; 25(3): 1629-1636, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38361251

RESUMO

There is a high demand for rapid, sensitive, and accurate detection methods for pathogens. This paper demonstrates a method of detecting the presence of amplified DNA from a range of pathogens associated with serious infections including Gram-negative bacteria, Gram-positive bacteria, and viruses. DNA is amplified using a polymerase chain reaction (PCR) and consequently detected using a sterically stabilized, cationic polymer latex. The DNA induces flocculation of this cationic latex, which consequently leads to rapid sedimentation and a visible change from a milky-white dispersion to one with a transparent supernatant, presenting a clear visible change, indicating the presence of amplified DNA. Specifically, a number of different pathogens were amplified using conventional or qPCR, including Staphylococcus aureus, Escherichia coli, and Herpes Simplex Virus (HSV-2). This method was demonstrated to detect the presence of bacteria in suspension concentrations greater than 380 CFU mL-1 and diagnose the presence of specific genomes through primer selection, as exemplified using methicillin resistant and methicillin susceptible Staphylococcus aureus. The versatility of this methodology was further demonstrated by showing that false positive results do not occur when a PCR of fungal DNA from C. albicans is conducted using bacterial universal primers.


Assuntos
Técnicas Biossensoriais , Látex , Floculação , DNA/genética , Staphylococcus aureus/genética , Reação em Cadeia da Polimerase/métodos , DNA Bacteriano/genética , Sensibilidade e Especificidade
3.
Soft Matter ; 19(11): 2074-2081, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857682

RESUMO

This paper reports a generic method to prepare polymer nanoparticle-based complex coacervate (PNCC) hydrogels by employing rationally designed nanogels synthesised by reversible addition-fragmentation chain-transfer (RAFT)-mediated polymerisation-induced self-assembly (PISA). Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agent (macro-CTA) was synthesised via RAFT solution polymerisation followed by chain-extension with a statistical copolymer of benzyl methacrylate (BzMA) and methacrylic acid (MAA) at pH 2. Thus, pH-responsive nanoparticles (NPs) comprising a hydrophobic polyacid core-forming block and a sulfonate-functional stabiliser block were formed. With the introduction of methacrylic acid into the core of the NPs, they become swollen with increasing pH, as judged by dynamic light scattering (DLS), indicating nanogel-type behaviour. PNCC hydrogels were prepared by simply mixing the PISA-derived nanogels and cationic branched polyethyleneimine (bPEI) at 20% w/w. In the absence of MAA in the core of the NPs, gel formation was not observed. The mass ratio between the nanogels and bPEI affected resulting hydrogel strength and a mixture of bPEI and PKSPMA68-P(BzMA0.6-stat-MAA0.4)300 NPs with a mass ratio of 0.14 at pH ∼7 resulted in a hydrogel with a storage modulus of approximately 2000 Pa, as determined by oscillatory rheology. This PNCC hydrogel was shear-thinning and injectable, with recovery of gel strength occurring rapidly after the removal of shear.

4.
Soft Matter ; 19(34): 6513-6524, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584171

RESUMO

Graphene oxide (GO) containing block copolymer nanocomposite hydrogels formed from poly(glycerol monomethacrylate-block-hydroxypropyl methacrylate) (PGMA-PHPMA) wormlike micelles were prepared by either mixing GO and copolymer at low temperature or via in situ reversible addition-fragmentation chain-transfer (RAFT) polymerisation-induced self-assembly (PISA) of HPMA in the presence of a PGMA macromolecular chain-transfer agent and GO flakes. Hydrogels containing 15-25% w/w copolymer and 0 and 8% w/w GO, based on copolymer, were investigated and the maximum gel strength measured was ∼33 kPa for a 25% w/w copolymer gel prepared by in situ polymerisation and containing 2% w/w GO based on copolymer. This gel strength represents a fifteen-fold increase over the same copolymer gel without the addition of GO. The nanocomposite gels were found to recover efficiently after the application of high shear, with up to 98% healing efficiency within seconds. These gels are also 3D printable, self-healing, adhesive and temperature responsive on cooling and re-heating. The observed properties were both GO and copolymer concentration dependent, and tensile testing demonstrated that the nanocomposite gels had higher moduli, elongation at break and toughness than gels prepared without GO.

5.
Langmuir ; 38(27): 8187-8199, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771239

RESUMO

Polymer/graphene oxide (GO) nanocomposite particles were prepared via heteroflocculation between 140-220 nm cationic latex nanoparticles and anionic GO nanosheets in either acidic or basic conditions. It is demonstrated that nanocomposite particles can be formed using either poly(2-vinylpyridine)-b-poly(benzyl methacrylate) (P2VP-PBzMA) block copolymer nanoparticles prepared by reversible-addition chain-transfer (RAFT)-mediated polymerization-induced self-assembly (PISA), or poly(ethylene glycol)methacrylate (PEGMA)-stabilized P2VP latexes prepared by traditional emulsion polymerization. These two latexes are different morphologically as the P2VP-PBzMA block copolymer latexes have P2VP steric stabilizer chains in their corona, whereas the PEGMA-stabilized P2VP particles have a P2VP core and a nonionic steric stabilizer. Nevertheless, both the P2VP-PBzMA and PEGMA-stabilized P2VP latexes are cationic at low pH. Thus, the addition of GO to these latexes causes flocculation to occur immediately due to the opposite charges between the anionic GO nanosheets and cationic latexes. Control heteroflocculation experiments were conducted using anionic sterically stabilized poly(potassium 3-sulfopropyl methacrylate)-b-poly(benzyl methacrylate) (PKSPMA-PBzMA) and nonionic poly(benzyl methacrylate) (PBzMA) nanoparticles to demonstrate that polymer/GO nanocomposite particles were not formed. The degree of flocculation and the strength of electrostatic interaction between the cationic polymer latexes and GO were assessed using disc centrifuge photosedimentometry (DCP), transmission electron microscopy (TEM), and UV-visible spectrophotometry. These studies suggest that the optimal conditions for the formation of polymer/GO nanocomposite particles were GO contents between 10% and 20% w/w relative to latex, with the latexes containing P2VP in their corona having a stronger electrostatic attraction to the GO sheets.

6.
Soft Matter ; 18(12): 2422-2433, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266496

RESUMO

This paper reports a generic method for preparing reinforced nanocomposite worm-gels. Aqueous poly(glycerol monomethacrylate)-b-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) and methanolic poly(glycerol monomethacrylate)-b-poly(benzyl methacrylate) (PGMA-PBzMA) worm gels were prepared by RAFT-mediated polymerisation-induced self-assembly (PISA). The former system undergoes a reversible worm-to-sphere degelation transition upon cooling to 5 °C whilst the latter system undergoes the same transition on heating to 56 °C. This transition allows these copolymer dispersions to be readily mixed with graphene oxide (GO) whilst in a low viscosity state and form nanocomposite gels on returning to room temperature via a sphere-to-worm transition. Various quantities of GO were added to the studied copolymer dispersions at a fixed copolymer content of 15% w/w. A general trend was observed whereby relatively small quantities of GO caused the gel strength of the nanocomposite gel to be higher than that of the pristine worm-gel, as determined by oscillatory rheology. Additional quantities of GO resulted in gel weakening or prevented gel-reformation altogether. For instance, 15% w/w PGMA52-PHPMA130 worm gels had a storage modulus (G') of approximately 1.5 kPa. The addition of 1.5% w/w GO based on the copolymer caused G' to increase to approximately 4.0 kPa but >1.5% w/w GO resulted in gel strengths <1.0 kPa. A combination of aqueous electrophoresis and transmission electron microscopy measurements were used to investigate the mechanism of nanocomposite gel formation. It was observed that the PGMA-based copolymers readily absorb onto the surface of GO. Thus, the role of GO is both to strengthen the worm-gels when an optimal concentration of GO is used, but also prevent worm-reformation if too much copolymer becomes absorbed on the surface of the sheets.

7.
Soft Matter ; 18(7): 1385-1394, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35084008

RESUMO

Polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) polymerization has become widely recognized as a versatile and efficient strategy to prepare complex block copolymer nanoparticles with controlled morphology, size, and surface functionality. In this article, we report the preparation of cationic sterically-stabilized poly(2-vinylpyridine)-poly(benzyl methacrylate) (P2VP-PBzMA) diblock copolymer nanoparticles via RAFT-mediated PISA under aqueous emulsion polymerization conditions. It is demonstrated that the solution pH during PISA has a dramatic effect on the resulting P2VP-PBzMA nanoparticles, as judged by dynamic light scattering (DLS), disc centrifuge photosedimentometry (DCP) and transmission electron microscopy (TEM). Varying the solution pH results in the P2VP stabilizer having different solubilities due to protonation/deprotonation of the pyridine groups. This allows P2VP-PBzMA nanoparticles with tunable diameters to be prepared by altering the DP of the stabilizer (P2VP) and/or core-forming block (PBzMA), or simply by changing the solution pH for a fixed copolymer composition. For example, P2VP-PBzMA nanoparticles with larger diameters can be obtained at higher solution pH as the protonation degree of the P2VP stabilizer has a large effect on both the aggregation of polymer chains during the PISA process, and the resulting behavior of the diblock copolymer nanoparticles. Changing the dispersion pH post-polymerization has a relatively limited effect on particle diameter. Furthermore, aqueous electrophoresis studies indicate that these P2VP-PBzMA nanoparticles had good colloidal stability and high cationic charge (>30 mV) below pH 5 and can be dispersed readily over a wide pH range.

8.
Angew Chem Int Ed Engl ; 58(13): 4302-4307, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673157

RESUMO

In principle, incorporating nanoparticles into growing crystals offers an attractive and highly convenient route for the production of a wide range of novel nanocomposites. Herein we describe an efficient aqueous route that enables the spatially controlled occlusion of gold nanoparticles (AuNPs) within ZnO crystals at up to 20 % by mass. Depending on the precise synthesis protocol, these AuNPs can be (i) solely located within a central region, (ii) uniformly distributed throughout the ZnO host crystal or (iii) confined to a surface layer. Remarkably, such efficient occlusion is mediated by a non-ionic water-soluble polymer, poly(glycerol monomethacrylate)70 (G70 ), which is chemically grafted to the AuNPs; pendent cis-diol side groups on this steric stabilizer bind Zn2+ cations, which promotes nanoparticle interaction with the growing ZnO crystals. Finally, uniform occlusion of G70 -AuNPs within this inorganic host leads to faster UV-induced photodegradation of a model dye.

9.
J Am Chem Soc ; 140(25): 7936-7945, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29916709

RESUMO

Recently, it has become clear that a range of nanoparticles can be occluded within single crystals to form nanocomposites. Calcite is a much-studied model, but even in this case we have yet to fully understand the details of the nanoscale interactions at the organic-inorganic interface that lead to occlusion. Here, a series of diblock copolymer nanoparticles with well-defined surface chemistries were visualized interacting with a growing calcite surface using in situ atomic force microscopy. These nanoparticles comprise a poly(benzyl methacrylate) (PBzMA) core-forming block and a non-ionic poly(glycerol monomethacrylate) (Ph-PGMA), a carboxylic acid-tipped poly(glycerol monomethacrylate) (HOOC-PGMA), or an anionic poly(methacrylic acid) (PMAA) stabilizer block. Our results reveal three modes of interaction between the nanoparticles and the calcite surface: (i) attachment followed by detachment, (ii) sticking to and "hovering" over the surface, allowing steps to pass beneath the immobilized nanoparticle, and (iii) incorporation of the nanoparticle by the growing crystals. By analyzing the relative contributions of these three types of interactions as a function of nanoparticle surface chemistry, we show that ∼85% of PMAA85-PBzMA100 nanoparticles either "hover" or become incorporated, compared to ∼50% of the HOOC-PGMA71-PBzMA100 nanoparticles. To explain this difference, we propose a two-state binding mechanism for the anionic PMAA85-PBzMA100 nanoparticles. The "hovering" nanoparticles possess highly extended polyelectrolytic stabilizer chains and such chains must adopt a more "collapsed" conformation prior to successful nanoparticle occlusion. This study provides a conceptual framework for understanding how sterically stabilized nanoparticles interact with growing crystals, and suggests design principles for improving occlusion efficiencies.

10.
Soft Matter ; 13(11): 2228-2238, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28252143

RESUMO

Self-assembling poly(lauryl methacrylate)-b-poly(benzyl methacrylate) (PLMAx-PBzMAy) diblock copolymers were synthesised for the first time using solution atom transfer radical polymerisation (ATRP). The PLMA degree of polymerisation (x) was fixed at 14 and the PBzMA degree of polymerisation (y) was varied from 34 to 74. Post-polymerisation transfer of this new series of diblock copolymers from chloroform into n-dodecane (a poor solvent for PBzMA) resulted in self-assembly of polymeric nano-objects. The morphologies for the latter (spheres, worms and vesicles) were controlled by y. The observed morphologies generally agreed with those reported for related PLMAx-PBzMAy diblock copolymers (x ≥ 16) prepared by polymerisation induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) polymerisation (Fielding et al., J. Am. Chem. Soc., 2014, 136, 5790). However, a number of differences were observed such as de-gelation behaviour and the phase boundary positions compared to those expected from Fielding et al. Variable-temperature dynamic light scattering studies for the PLMA14-PBzMA34 spheres revealed that the aggregation number was unaffected by a temperature increase over the range of 20-90 °C, which differed markedly from the behaviour observed for PLMA14-PBzMA64 worms. This difference is a new observation with mechanistic importance for the worm-to-sphere breakdown mechanism. We show that concentrated PLMA14-PBzMAy dispersions (20% w/w) in n-dodecane can be prepared using post-polymerisation transfer. The dispersion with a mixed spherical and worm-like copolymer phase exhibited reversible de-gelation when heated. Surprisingly, the dispersions containing only the worm phase remained as gels (which were white) at temperatures up to 90 °C. Our new ATRP approach for preparing temperature-responsive non-aqueous nano-object dispersions presented here decoupled chain growth and self-assembly and will apply to other copolymer dispersions.

11.
J Am Chem Soc ; 138(36): 11734-42, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27509298

RESUMO

Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM-PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals.

12.
Langmuir ; 31(14): 4137-44, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25834923

RESUMO

The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)-poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 µm using a two-stage approach. First, a w/o precursor emulsion comprising 25 µm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers.

13.
Langmuir ; 31(38): 10358-69, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26344920

RESUMO

Soot formation in diesel engines is known to cause premature engine wear. Unfortunately, genuine diesel soot is expensive to generate, so carbon blacks are often used as diesel soot mimics. Herein, the suitability of a commercial carbon black (Regal 250R) as a surrogate for diesel soot dispersed in engine base oil is examined in the presence of two commonly used polymeric lubricant additives. The particle size, morphology, and surface composition of both substrates are assessed using BET surface area analysis, TEM, and XPS. The extent of adsorption of a poly(ethylene-co-propylene) (dOCP) statistical copolymer or a polystyrene-block-poly(ethylene-co-propylene) (PS-PEP) diblock copolymer onto carbon black or diesel soot from n-dodecane is compared indirectly using a supernatant depletion assay technique via UV spectroscopy. Thermogravimetric analysis is also used to directly determine the extent of copolymer adsorption. Degrees of dispersion are examined using optical microscopy, TEM, and analytical centrifugation. SAXS studies reveal some structural differences between carbon black and diesel soot particles. The mean radius of gyration determined for the latter is significantly smaller than that calculated for the former, and in the absence of any copolymer, diesel soot suspended in n-dodecane forms relatively loose mass fractals compared to carbon black. SAXS provides evidence for copolymer adsorption and indicates that addition of either copolymer transforms the initially compact agglomerates into relatively loose aggregates. Addition of dOCP or PS-PEP does not significantly affect the structure of the carbon black primary particles, with similar results being observed for diesel soot. In favorable cases, remarkably similar data can be obtained for carbon black and diesel soot when using dOCP and PS-PEP as copolymer dispersants. However, it is not difficult to identify simple copolymer-particle-solvent combinations for which substantial differences can be observed. Such observations are most likely the result of dissimilar surface chemistries, which can profoundly affect the colloidal stability.

14.
Langmuir ; 31(32): 8764-73, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26203669

RESUMO

Two poly(styrene-b-hydrogenated isoprene) (PS-PEP) copolymers and a poly(styrene-b-hydrogenated butadiene) (PS-PB) diblock copolymer of differing polystyrene content (20, 28 or 35 mol %) and molecular weight (117-183 kg mol(-1)) are examined. These copolymers form star-like micelles in n-dodecane, as judged by TEM, DLS, and SAXS studies. At ambient temperature, such micelles are known to adsorb intact onto a model colloidal substrate such as carbon black, conferring a high degree of dispersion (Growney, D. J.; Mykhaylyk, O. O.; Armes, S. P. Langmuir 2014, 30, 6047). Isotherms for micellar adsorption on carbon black at 20 °C are constructed using a supernatant depletion assay based on UV spectroscopy by utilizing the aromatic chromophore in the polystyrene block. Perhaps surprisingly, the diblock copolymer with the lowest polystyrene content has the strongest affinity for the carbon black particles. Assuming that the star-like diblock copolymer micelles adsorb onto carbon black to form hemi-micelles with a stabilizer layer thickness equal to the mean micelle radius, the effective particle density of the resulting sterically stabilized carbon black particles in n-dodecane can be estimated from the SAXS micelle dimensions based on geometric considerations. As an approximation, a spherical core-shell morphology was assumed, and the primary grain size of the carbon black particles was determined to be 74 nm diameter as judged by BET surface area analysis. Using this approach, effective particle densities of 0.90, 0.91, and 0.92 g cm(-3) were calculated for sterically stabilized carbon black particles prepared using the PS-PB20, PS-PEP28, and PS-PEP35 diblock copolymers, respectively. These densities are significantly lower than that of carbon black (1.89 g cm(-3)), which indicates that the sterically stabilized carbon black particles are substantially solvated. Since the rate of sedimentation of the sterically stabilized carbon black particles depends on the density difference between the effective particle density and that of n-dodecane (0.75 g cm(-3)), particle size analysis via analytical centrifugation incurs large sizing errors unless the above corrected effective particle densities are utilized. This is important because analytical centrifugation is a highly convenient technique for assessing the relative degree of dispersion of sterically stabilized carbon black particles, which are utilized to inkjet inks and coatings formulations.

15.
J Am Chem Soc ; 136(15): 5790-8, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24678949

RESUMO

Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA-PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature (1)H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions.

16.
Macromolecules ; 57(8): 3496-3501, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38681060

RESUMO

Colloidal nanogels formed from a pH-responsive poly(succinate)-functional core and a poly(sulfonate)-functional corona were prepared via a previously unreported reversible addition-fragmentation chain-transfer (RAFT)-mediated aqueous emulsion polymerization-induced self-assembly (PISA) route. Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA50) macromolecular chain-transfer agent (macro-CTA) was synthesized via RAFT solution polymerization followed by chain-extension with a hydrophobic, carboxylic acid-functional, 2-(methacryloyloxy) ethyl succinate (MES) monomer at pH 2. Colloidal nanoparticles with tunable diameters between 66 to 150 nm, depending on the core composition, and narrow particle size distributions were obtained at 20% w/w solids. Well-defined pH-responsive nanogels that swell on increasing the pH could be prepared even without the addition of a cross-linking comonomer, and introducing an additional cross-linker to the core led to smaller nanogels with lower swelling ratios. These nanogels could reversibly change in size on cycling the pH between acidic and basic conditions and remain colloidally stable over a wide pH range and at 70 °C.

17.
J Colloid Interface Sci ; 676: 396-407, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39033674

RESUMO

HYPOTHESIS: Pyrene derivatives are effective motifs when designing graphene-philic surfactants, enabling the use of hydrophobic graphene-based nanomaterials in waterborne formulations. Hence, novel pyrene end-functionalized polymeric stabilizers show promise for stabilizing aqueous graphene nanomaterial dispersions, and offer benefits over traditional small molecule surfactants. EXPERIMENTS: Pyrene end-functionalized poly(methacrylic acid) (Py-PMAAn, where n = 68 to 128) was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization of MAA using a pyrene-containing RAFT chain-transfer agent. These polymers were evaluated as aqueous graphene nanoplatelet (GNP) stabilizers. Subsequently, polymer-stabilized GNPs were formulated into film-forming polymer latex dispersions and the properties of the resulting GNP-containing films measured. FINDINGS: Py-PMAAn homopolymers with well-defined molecular weights were prepared via RAFT solution polymerization. They served as efficient stabilizers for aqueous GNP dispersions and performed better than a traditional small molecule surfactant and non-functionalized PMAA, especially at higher pH and with higher molecular weight polymers. The use of Py-PMAAn allowed GNPs to be readily formulated into waterborne latex coatings. When compared to controls, the resulting films were significantly reinforced due to the improved homogeneity of dried nanocomposite films and chain entanglement between the polymer matrix and stabilizers. Thus, the ability to readily incorporate GNPs into aqueous formulations and enhance GNP/polymer matrix interfaces was demonstrated for these novel amphiphilic stabilizers.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38592714

RESUMO

This article reports the preparation of multifunctional magnetic nanocomposite hydrogels formed from wormlike micelles. Specifically, iron oxide nanoparticles were incorporated into a temperature responsive block copolymer, poly(glycerol monomethacrylate)-b-poly(2-hydroxypropyl methacrylate) (PGMA-b-PHPMA), and graphene oxide (GO) dispersion at a low temperature (∼2 °C) through high-speed mixing and returning the mixture to room temperature, resulting in the formation of nanocomposite gels. The optimal concentrations of iron oxide and GO enhanced the gel strength of the nanocomposite gels, which exhibited a strong magnetic response when a magnetic field was applied. These materials retained the thermoresponsiveness of the PGMA-PHPMA wormlike micelles allowing for a solid-to-liquid transition to occur when the temperature was reduced. The mechanical and rheological properties and performance of the nanocomposite gels were demonstrated to be adjustable, making them suitable for a wide range of potential applications. These nanocomposite worm gels were demonstrated to be relatively adhesive and to act as strain and temperature sensors, with the measured electrical resistance of the nanocomposite gels changing with applied strain and temperature sweeps. The nanocomposite gels were found to recover efficiently after the application of high shear with approximately 100% healing efficiency within seconds. Additionally, these nanocomposite worm gels were injectable, and the addition of GO and iron oxide nanomaterials seemed to have no significant adverse impact on the biocompatibility of the copolymer gels, making them suitable not only for 3D printing in nanocomposite engineering but also for potential utilization in various biomedical applications as an injectable magnetic responsive hydrogel.

19.
ACS Appl Mater Interfaces ; 16(8): 10764-10773, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349253

RESUMO

Poly(glycerol monomethacrylate) (PGMA) prepared by reversible addition-fragmentation chain transfer polymerization was investigated as an additive for high-loading iron oxide nanoparticle (IOP) 3D printable inks. The effect of adjusting the molar mass and loading of PGMA on the rheology of IOP suspensions was investigated, and an optimized ink formulation containing 70% w/w IOPs and 0.25% w/w PGMA98 at pH 10 was developed. This ink was successfully 3D printed onto various substrates and into several structures, including rectangles, high aspect ratio cylinders, letters, spiral- and comb-shaped structures, and thin- and thick-walled toroids. The effect of sintering on the mechanical properties of printed artifacts was investigated via four-point flexural and compressive testing, with higher sintering temperatures resulting in improved mechanical properties due to changes in the particle size and microstructure. The printed toroids were fabricated into inductors, and their electrical performance was assessed via impedance spectroscopy at a working frequency range of 0.001-13 MHz. There was a clear trade-off between electrical properties and sintering temperature due to a phase change between γ-Fe2O3 and α-Fe2O3 upon heating. Nevertheless, the optimized devices had a Q factor of ∼40 at 10 MHz, representing a superior performance compared to that of other inductors with iron oxide cores previously reported. Thus, this report represents a significant step toward the development of low-cost, fully aqueous, high loading, and 3D printable ceramic inks for high-performance inductors and functional devices.

20.
Chem Mater ; 36(4): 2061-2075, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435050

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to prepare well-defined ABCB tetrablock copolymer nanoparticles via sequential monomer addition at 30 °C. The A block comprises water-soluble poly(2-(N-acryloyloxy)ethyl pyrrolidone) (PNAEP), while the B and C blocks comprise poly(t-butyl acrylate) (PtBA) and poly(n-butyl acrylate) (PnBA), respectively. High conversions are achieved at each stage, and the final sterically stabilized spherical nanoparticles can be obtained at 20% w/w solids at pH 3 and at up to 40% w/w solids at pH 7. A relatively long PnBA block is targeted to ensure that the final tetrablock copolymer nanoparticles form highly transparent films on drying such aqueous dispersions at ambient temperature. The kinetics of polymerization and particle growth are studied using 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, and transmission electron microscopy, while gel permeation chromatography analysis confirmed a high blocking efficiency for each stage of the polymerization. Differential scanning calorimetry and small-angle X-ray scattering studies confirm microphase separation between the hard PtBA and soft PnBA blocks, and preliminary mechanical property measurements indicate that such tetrablock copolymer films exhibit promising thermoplastic elastomeric behavior. Finally, it is emphasized that targeting an overall degree of polymerization of more than 1000 for such tetrablock copolymers mitigates the cost, color, and malodor conferred by the RAFT agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA