Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 86: 41-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626080

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by dyskinesia, cognitive impairment and emotional disturbances, presenting progressive neurodegeneration in the striatum and intracellular mutant Huntingtin (mHTT) aggregates in various areas of the brain. Recombinant Adeno Associated Viral (rAAV) vectors have been successfully used to transfer foreign genes to the brain of adult animals. In the present study we report a novel in vivo rat HD model obtained by stereotaxic injection of rAAV serotype2/9 containing Exon1-Q138 mHTT (Q138) and Exon1-Q17 wild type HTT (Q17; control), respectively in the right and in the left striatum, and expressed as C-terminal GFP fusions to facilitate detection of infected cells and aggregate production. Immunohistochemical analysis of brain slices from animals sacrificed twenty-one days after viral infection showed that Q138 injection resulted in robust formation of GFP-positive aggregates in the striatum, increased GFAP and microglial activation and neurodegeneration, with little evidence of any of these events in contralateral tissue infected with wild type (Q17) expressing construct. Differences in the relative metabolite concentrations (N-Acetyl Aspartate/Creatine and Myo-Inositol/Creatine) were observed by H1 MR Spectroscopy. By quantitative RT-PCR we also demonstrated that mHTT induced changes in the expression of genes previously shown to be altered in other rodent HD models. Importantly, administration of reference compounds previously shown to ameliorate the aggregation and neurodegeneration phenotypes in preclinical HD models was demonstrated to revert the mutant HTT-dependent effects in our model. In conclusion, the AAV2/9-Q138/Q17 exon 1 HTT stereotaxic injection represents a useful first-line in vivo preclinical model for studying the biology of mutant HTT exon 1 in the striatum and to provide early evidence of efficacy of therapeutic approaches.


Assuntos
Corpo Estriado/metabolismo , Corpo Estriado/virologia , Dependovirus/genética , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Vetores Genéticos/administração & dosagem , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Animais , Corpo Estriado/patologia , Encefalite/metabolismo , Encefalite/virologia , Éxons , Feminino , Proteínas de Fluorescência Verde/metabolismo , Proteína Huntingtina , Doença de Huntington/metabolismo , Neuroglia/metabolismo , Neurônios/patologia , Neurônios/virologia , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo
2.
Eur J Pharm Sci ; 86: 136-42, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26987608

RESUMO

Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (P<0.05), recorded noninvasively with OI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase.


Assuntos
Genes Reporter/genética , Imagem Molecular , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Humanos , Cloreto de Lítio/farmacologia , Luciferases de Vaga-Lume/genética , Imageamento por Ressonância Magnética , Camundongos Nus , Imagem Óptica , Via de Sinalização Wnt
3.
ACS Med Chem Lett ; 4(10): 979-84, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900595

RESUMO

Here, we describe the selection and optimization of a chemical series active in both a full-length and a fragment-based Huntington's disease (HD) assay. Twenty-four thousand small molecules were screened in a phenotypic HD assay, identifying a series of compounds bearing a 3-hydroxy-3-trifluoromethylpyrazole moiety as able to revert the toxicity induced by full-length mutant Htt by up to 50%. A chemical exploration around the series led to the identification of compound 4f, which demonstrated to be active in a Htt171-82Q rat primary striatal neuron assay and a PC12-Exon-1 based assay. This compound was selected for testing in R6/2 mice, in which it was well-tolerated and showed a positive effect on body weight and a positive trend in preventing ventricular volume enlargment. These studies provide strong rationale for further testing the potential benefits of 3-hydroxy-3-trifluoromethylpyrazoles in treating HD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA