Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 41(2): 365-374, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332389

RESUMO

PURPOSE: Significant resources are spent on developing robust liquid chromatography (LC) methods with optimum conditions for all project in the pipeline. Although, data-driven computer assisted modelling has been implemented to shorten the method development timelines, these modelling approaches require project-specific screening data to model retention time (RT) as function of method parameters. Sometimes method re-development is required, leading to additional investments and redundant laboratory work. Cheminformatics techniques have been successfully used to predict the RT of metabolites & other component mixtures for similar use cases. Here we will show that these techniques can be used to model structurally diverse molecules and predictions of these models trained on multiple LC conditions can be used for downstream data-driven modelling. METHODS: The Molecular Operating Environment (MOE) was used to calculate over 800 descriptors using the strucutres of the analytes. These descriptors were used to model the RT of the analytes under four chromatographic conditions. These models were then used to create data-driven models using LC-SIM. RESULTS: A structural-based Random Forest (RF) model outperformed other techniques in cross-validation studies and predicted the RTs of a randomized test set with a median percentage error less than 4% for all LC conditions. RTs predicted by this structure-based model were used to fit a data-driven model that identifies optimum LC conditions without any additional experimental work. CONCLUSIONS: These results show that small training sets yield pharmaceutically relevant models when used in a combination of structure-based and data-driven model.


Assuntos
Cromatografia Líquida , Cromatografia Líquida/métodos , Simulação por Computador , Preparações Farmacêuticas
2.
J Chromatogr A ; 1730: 465109, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968662

RESUMO

The predictive modeling of liquid chromatography methods can be an invaluable asset, potentially saving countless hours of labor while also reducing solvent consumption and waste. Tasks such as physicochemical screening and preliminary method screening systems where large amounts of chromatography data are collected from fast and routine operations are particularly well suited for both leveraging large datasets and benefiting from predictive models. Therefore, the generation of predictive models for retention time is an active area of development. However, for these predictive models to gain acceptance, researchers first must have confidence in model performance and the computational cost of building them should be minimal. In this study, a simple and cost-effective workflow for the development of machine learning models to predict retention time using only Molecular Operating Environment 2D descriptors as input for support vector regression is developed. Furthermore, we investigated the relative performance of models based on molecular descriptor space by utilizing uniform manifold approximation and projection and clustering with Gaussian mixture models to identify chemically distinct clusters. Results outlined herein demonstrate that local models trained on clusters in chemical space perform equivalently when compared to models trained on all data. Through 10-fold cross-validation on a comprehensive set containing 67,950 of our company's proprietary analytes, these models achieved coefficients of determination of 0.84 and 3 % error in terms of retention time. This promising statistical significance is found to translate from cross-validation to prospective prediction on an external test set of pharmaceutically relevant analytes. The observed equivalency of global and local modeling of large datasets is retained with METLIN's SMRT dataset, thereby confirming the wider applicability of the developed machine learning workflows for global models.


Assuntos
Aprendizado de Máquina , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Cromatografia Líquida/métodos , Máquina de Vetores de Suporte , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA