Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nano Lett ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588382

RESUMO

Nitrogen vacancy (NV) center-based magnetometry has been proven to be a versatile sensor for various classes of magnetic materials in broad temperature and frequency ranges. Here, we use the longitudinal relaxation time T1 of single NV centers to investigate the spin dynamics of nanometer-thin flakes of α-RuCl3 at room temperature. We observe a significant reduction in the T1 in the presence of α-RuCl3 in the proximity of NVs, which we attribute to paramagnetic spin noise confined in the 2D hexagonal planes. Furthermore, the T1 time exhibits a monotonic increase with an applied magnetic field. We associate this trend with the alteration of the spin and charge noise in α-RuCl3 under an external magnetic field. These findings suggest that the influence of the spin dynamics of α-RuCl3 on the T1 of the NV center can be used to gain information about the material itself and the technique to be used on other 2D materials.

2.
Nanotechnology ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744268

RESUMO

The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications. .

3.
Nat Mater ; 20(8): 1079-1084, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33958771

RESUMO

A plethora of single-photon emitters have been identified in the atomic layers of two-dimensional van der Waals materials1-8. Here, we report on a set of isolated optical emitters embedded in hexagonal boron nitride that exhibit optically detected magnetic resonance. The defect spins show an isotropic ge-factor of ~2 and zero-field splitting below 10 MHz. The photokinetics of one type of defect is compatible with ground-state electron-spin paramagnetism. The narrow and inhomogeneously broadened magnetic resonance spectrum differs significantly from the known spectra of in-plane defects. We determined a hyperfine coupling of ~10 MHz. Its angular dependence indicates an unpaired, out-of-plane delocalized π-orbital electron, probably originating from substitutional impurity atoms. We extracted spin-lattice relaxation times T1 of 13-17 µs with estimated spin coherence times T2 of less than 1 µs. Our results provide further insight into the structure, composition and dynamics of single optically active spin defects in hexagonal boron nitride.

4.
Nano Lett ; 20(1): 463-469, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820999

RESUMO

Coupled micro- and nanomechanical oscillators are of fundamental and technical interest for emerging quantum technologies. Upon interfacing with long-lived solid-state spins, the coherent manipulation of the quantum hybrid system becomes possible even at ambient conditions. Although the ability of these systems to act as a quantum bus inducing long-range spin-spin interactions has been known, the possibility to coherently couple electron/nuclear spins to the common modes of multiple oscillators and map their mechanical motion to spin-polarization has not been experimentally demonstrated. We here report experiments on interfacing spins to the common modes of a coupled cantilever system and show their correlation by translating ultralow forces induced by radiation from one oscillator to a distant spin. Further, we analyze the coherent spin-spin coupling induced by the common modes and estimate the entanglement generation among distant spins.

5.
Nano Lett ; 16(11): 7037-7045, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27700104

RESUMO

Newly discovered van der Waals materials like MoS2, WSe2, hexagonal boron nitride (h-BN), and recently C2N have sparked intensive research to unveil the quantum behavior associated with their 2D structure. Of great interest are 2D materials that host single quantum emitters. h-BN, with a band gap of 5.95 eV, has been shown to host single quantum emitters which are stable at room temperature in the UV and visible spectral range. In this paper we investigate correlations between h-BN structural features and emitter location from bulk down to the monolayer at room temperature. We demonstrate that chemical etching and ion irradiation can generate emitters in h-BN. We analyze the emitters' spectral features and show that they are dominated by the interaction of their electronic transition with a single Raman active mode of h-BN. Photodynamics analysis reveals diverse rates between the electronic states of the emitter. The emitters show excellent photo stability even under ambient conditions and in monolayers. Comparing the excitation polarization between different emitters unveils a connection between defect orientation and the h-BN hexagonal structure. The sharp spectral features, color diversity, room-temperature stability, long-lived metastable states, ease of fabrication, proximity of the emitters to the environment, outstanding chemical stability, and biocompatibility of h-BN provide a completely new class of systems that can be used for sensing and quantum photonics applications.

6.
Nano Lett ; 15(8): 4942-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26218205

RESUMO

To study the magnetic dynamics of superparamagnetic nanoparticles, we use scanning probe relaxometry and dephasing of the nitrogen vacancy (NV) center in diamond, characterizing the spin noise of a single 10 nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T1) and dephasing (T2) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

7.
Nature ; 512(7515): 380-1, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164745
8.
Nat Commun ; 13(1): 7527, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473849

RESUMO

The quantum Zeno and anti-Zeno paradigms have thus far addressed the evolution control of a quantum system coupled to an immutable bath via non-selective measurements performed at appropriate intervals. We fundamentally modify these paradigms by introducing, theoretically and experimentally, the concept of controlling the bath state via selective measurements of the system (a qubit). We show that at intervals corresponding to the anti-Zeno regime of the system-bath exchange, a sequence of measurements has strongly correlated outcomes. These correlations can dramatically enhance the bath-state purity and yield a low-entropy steady state of the bath. The purified bath state persists long after the measurements are completed. Such purification enables the exploitation of spin baths as long-lived quantum memories or as quantum-enhanced sensors. The experiment involved a repeatedly probed defect center dephased by a nuclear spin bath in a diamond at low-temperature.

10.
Nano Lett ; 10(3): 1046-9, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20131810

RESUMO

A nanometer-sized superconducting quantum interference device (nanoSQUID) is fabricated on the apex of a sharp quartz tip and integrated into a scanning SQUID microscope. A simple self-aligned fabrication method results in nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An aluminum nanoSQUID with an effective area of 0.034 microm2 displays flux sensitivity of 1.8 x 10(-6) Phi(0)/Hz(1/2) and operates in fields as high as 0.6 T. With projected spin sensitivity of 65 micro(B)/Hz(1/2) and high bandwidth, the SQUID on a tip is a highly promising probe for nanoscale magnetic imaging and spectroscopy.


Assuntos
Magnetismo/instrumentação , Microscopia de Varredura por Sonda/instrumentação , Nanotecnologia/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Natl Sci Rev ; 8(5): nwaa194, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691635

RESUMO

Nitrogen-vacancy (NV) centers in diamond are promising quantum sensors because of their long spin coherence time under ambient conditions. However, their spin resonances are relatively insensitive to non-magnetic parameters such as temperature. A magnetic-nanoparticle-nanodiamond hybrid thermometer, where the temperature change is converted to the magnetic field variation near the Curie temperature, were demonstrated to have enhanced temperature sensitivity ([Formula: see text]) (Wang N, Liu G-Q and Leong W-H et al. Phys Rev X 2018; 8: 011042), but the sensitivity was limited by the large spectral broadening of ensemble spins in nanodiamonds. To overcome this limitation, here we show an improved design of a hybrid nanothermometer using a single NV center in a diamond nanopillar coupled with a single magnetic nanoparticle of copper-nickel alloy, and demonstrate a temperature sensitivity of [Formula: see text]. This hybrid design enables detection of 2 mK temperature changes with temporal resolution of 5 ms. The ultra-sensitive nanothermometer offers a new tool to investigate thermal processes in nanoscale systems.

12.
Nat Commun ; 11(1): 6405, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335106

RESUMO

Atomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C60 fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (14N@C60) within a C60 matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods.

13.
Rev Sci Instrum ; 88(1): 013702, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147665

RESUMO

Magnetic sensing and imaging instruments are important tools in biological and material sciences. There is an increasing demand for attaining higher sensitivity and spatial resolution, with implementations using a single qubit offering potential improvements in both directions. In this article we describe a scanning magnetometer based on the nitrogen-vacancy center in diamond as the sensor. By means of a quantum-assisted readout scheme together with advances in photon collection efficiency, our device exhibits an enhancement in signal to noise ratio of close to an order of magnitude compared to the standard fluorescence readout of the nitrogen-vacancy center. This is demonstrated by comparing non-assisted and assisted methods in a T1 relaxation time measurement.

14.
Sci Rep ; 7(1): 14758, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116207

RESUMO

Low-dimensional wide bandgap semiconductors open a new playing field in quantum optics using sub-bandgap excitation. In this field, hexagonal boron nitride (h-BN) has been reported to host single quantum emitters (QEs), linking QE density to perimeters. Furthermore, curvature/perimeters in transition metal dichalcogenides (TMDCs) have demonstrated a key role in QE formation. We investigate a curvature-abundant BN system - quasi one-dimensional BN nanotubes (BNNTs) fabricated via a catalyst-free method. We find that non-treated BNNT is an abundant source of stable QEs and analyze their emission features down to single nanotubes, comparing dispersed/suspended material. Combining high spatial resolution of a scanning electron microscope, we categorize and pin-point emission origin to a scale of less than 20 nm, giving us a one-to-one validation of emission source with dimensions smaller than the laser excitation wavelength, elucidating nano-antenna effects. Two emission origins emerge: hybrid/entwined BNNT. By artificially curving h-BN flakes, similar QE spectral features are observed. The impact on emission of solvents used in commercial products and curved regions is also demonstrated. The 'out of the box' availability of QEs in BNNT, lacking processing contamination, is a milestone for unraveling their atomic features. These findings open possibilities for precision engineering of QEs, puts h-BN under a similar 'umbrella' of TMDC's QEs and provides a model explaining QEs spatial localization/formation using electron/ion irradiation and chemical etching.

15.
Sci Adv ; 3(8): e1701116, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28819646

RESUMO

Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

16.
J Magn Reson ; 269: 225-236, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27378060

RESUMO

Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

17.
Nat Nanotechnol ; 8(9): 639-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23995454

RESUMO

Superconducting quantum interference devices (SQUIDs) can be used to detect weak magnetic fields and have traditionally been the most sensitive magnetometers available. However, because of their relatively large effective size (on the order of 1 µm), the devices have so far been unable to achieve the level of sensitivity required to detect the field generated by the spin magnetic moment (µB) of a single electron. Here we show that nanoscale SQUIDs with diameters as small as 46 nm can be fabricated on the apex of a sharp tip. The nano-SQUIDs have an extremely low flux noise of 50 nΦ0 Hz(-1/2) and a spin sensitivity of down to 0.38 µB Hz(-1/2), which is almost two orders of magnitude better than previous devices. They can also operate over a wide range of magnetic fields, providing a sensitivity of 0.6 µB Hz(-1/2) at 1 T. The unique geometry of our nano-SQUIDs makes them well suited to scanning probe microscopy, and we use the devices to image vortices in a type II superconductor, spaced 120 nm apart, and to record magnetic fields due to alternating currents down to 50 nT.


Assuntos
Microscopia de Força Atômica , Nanoestruturas/química , Semicondutores , Nanoestruturas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA