Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Metabolomics ; 15(1): 11, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30830456

RESUMO

INTRODUCTION: Untargeted metabolomics is a powerful tool to detect hundreds of metabolites within a given tissue and to compare the metabolite composition of samples in a comprehensive manner. However, with regard to pollen research such comprehensive metabolomics approaches are yet not well developed. To enable isolation of pollen that is tightly enclosed within the anthers of the flower, such as immature pollen, the current pollen isolation protocols require the use of a watery solution. These protocols raise a number of concerns for their suitability in metabolomics analyses, in view of possible metabolic activities in the pollen and contamination with anther metabolites. OBJECTIVES: We assessed the effect of different sample preparation procedures currently used for pollen isolation for their suitability to perform metabolomics of tomato pollen. METHODS: Pollen were isolated using different methods and the metabolic profiles were analysed by liquid chromatography-mass spectrometry (LC-MS). RESULTS: Our results demonstrated that pollen isolation in a watery solution led to (i) rehydration of the pollen grains, inducing marked metabolic changes in flavonoids, phenylpropanoids and amino acids and thus resulting in a metabolite profile that did not reflect the one of mature dry pollen, (ii) hydrolysis of sucrose into glucose and fructose during subsequent metabolite extraction, unless the isolated and rehydrated pollen were lyophilized prior to extraction, and (iii) contamination with anther-specific metabolites, such as alkaloids, thus compromising the metabolic purity of the pollen fraction. CONCLUSION: We conclude that the current practices used to isolate pollen are suboptimal for metabolomics analyses and provide recommendations on how to improve the pollen isolation protocol, in order to obtain the most reliable metabolic profile from pollen tissue.


Assuntos
Pólen/metabolismo , Solanum lycopersicum/metabolismo , Manejo de Espécimes/métodos , Alcaloides/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos
2.
J Proteome Res ; 14(11): 4463-71, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26419256

RESUMO

Recently, we have developed a quantitative shotgun proteomics strategy called mass accuracy precursor alignment (MAPA). The MAPA algorithm uses high mass accuracy to bin mass-to-charge (m/z) ratios of precursor ions from LC-MS analyses, determines their intensities, and extracts a quantitative sample versus m/z ratio data alignment matrix from a multitude of samples. Here, we introduce a novel feature of this algorithm that allows the extraction and alignment of proteotypic peptide precursor ions or any other target peptide from complex shotgun proteomics data for accurate quantification of unique proteins. This strategy circumvents the problem of confusing the quantification of proteins due to indistinguishable protein isoforms by a typical shotgun proteomics approach. We applied this strategy to a comparison of control and heat-treated tomato pollen grains at two developmental stages, post-meiotic and mature. Pollen is a temperature-sensitive tissue involved in the reproductive cycle of plants and plays a major role in fruit setting and yield. By LC-MS-based shotgun proteomics, we identified more than 2000 proteins in total for all different tissues. By applying the targeted MAPA data-processing strategy, 51 unique proteins were identified as heat-treatment-responsive protein candidates. The potential function of the identified candidates in a specific developmental stage is discussed.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Peptídeos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Pólen/genética , Proteoma/isolamento & purificação , Solanum lycopersicum/genética , Adaptação Fisiológica/genética , Algoritmos , Sequência de Aminoácidos , Cromatografia Líquida , Temperatura Alta , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Espectrometria de Massas/estatística & dados numéricos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Peptídeos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Análise de Componente Principal , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
3.
Am J Bot ; 102(7): 1040-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26199362

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Yield in sweetpotato is determined by the number of storage roots produced per plant. Storage roots develop from adventitious roots (ARs) present in stem cuttings that serve as propagation material. Data on the origin of sweetpotato ARs and the effect of nodal position on AR establishment and further development are limited.• METHODS: We anatomically described root primordium initiation using stem sections and measured number of root primordia formed at different nodal positions using light microscopy and correlated nodal positions with AR number and length 14 d after planting (DAP).• KEY RESULTS: Primordia for ARs initiate at the junction of the stem pith ray and the cambium, on both sides of the leaf gap, and they are well developed before emerging from the stem. The number of ARs that develop from isolated stem nodes 14 DAP corresponded to the number of AR primordia detected inside the stem. The total length of established roots at nodes 9-13 from the apex is about 2-fold longer than at nodes 5-8.• CONCLUSIONS: Nodal position (age) has a significant effect on the developmental status and number of root primordia inside the stem, determining the number and length of ARs that have developed by 14 DAP. Adventitious roots originating from nodes 9-13 possess similar AR systems and develop better than those originating from younger nodes 3-8. The mechanism regulating AR initiation in nodes is discussed. This system can serve for studying the effect of environmental conditions on AR initiation, development, and capacity to form storage roots.


Assuntos
Ipomoea batatas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Ipomoea batatas/anatomia & histologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Caules de Planta/anatomia & histologia
4.
BMC Genomics ; 14: 460, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23834507

RESUMO

BACKGROUND: The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. RESULTS: Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. CONCLUSIONS: This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved in the earliest stage of storage root formation, highlighting the reduction in carbon flow toward phenylpropanoid biosynthesis and its delivery into carbohydrate metabolism and starch biosynthesis, as major events involved in storage root initiation. The novel transcripts related to storage root initiation identified in this study provide a starting point for further investigation into the molecular mechanisms underlying this process.


Assuntos
Regulação para Baixo/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Lignina/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Amido/biossíntese , Transcrição Gênica , Divisão Celular/genética , DNA Complementar/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Ipomoea batatas/citologia , Ipomoea batatas/crescimento & desenvolvimento , Anotação de Sequência Molecular , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Análise de Sequência , Amido/metabolismo , Fatores de Tempo
6.
Ann Bot ; 109(7): 1201-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22523424

RESUMO

BACKGROUND: The male gametophyte developmental programme can be divided into five phases which differ in relation to the environment and pollen hydration state: (1) pollen develops inside the anther immersed in locular fluid, which conveys substances from the mother plant--the microsporogenesis phase; (2) locular fluid disappears by reabsorption and/or evaporation before the anther opens and the maturing pollen grains undergo dehydration--the dehydration phase; (3) the anther opens and pollen may be dispersed immediately, or be held by, for example, pollenkitt (as occurs in almost all entomophilous species) for later dispersion--the presentation phase; (4) pollen is dispersed by different agents, remaining exposed to the environment for different periods--the dispersal phase; and (5) pollen lands on a stigma and, in the case of a compatible stigma and suitable conditions, undergoes rehydration and starts germination--the pollen-stigma interaction phase. SCOPE: This review highlights the issue of pollen water status and indicates the various mechanisms used by pollen grains during their five developmental phases to adjust to changes in water content and maintain internal stability. CONCLUSIONS: Pollen water status is co-ordinated through structural, physiological and molecular mechanisms. The structural components participating in regulation of the pollen water level, during both dehydration and rehydration, include the exine (the outer wall of the pollen grain) and the vacuole. Recent data suggest the involvement of water channels in pollen water transport and the existence of several molecular mechanisms for pollen osmoregulation and to protect cellular components (proteins and membranes) under water stress. It is suggested that pollen grains will use these mechanisms, which have a developmental role, to cope with environmental stress conditions.


Assuntos
Pólen/crescimento & desenvolvimento , Água/metabolismo
7.
Front Plant Sci ; 11: 609923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552103

RESUMO

Sweetpotato is an important food crop globally, serving as a rich source of carbohydrates, vitamins, fiber, and micronutrients. Sweetpotato yield depends on the modification of adventitious roots into storage roots. The underlying mechanism of this developmental switch is not fully understood. Interestingly, storage-root formation is manifested by formation of starch-accumulating parenchyma cells and bulking of the distal part of the root, while the proximal part does not show bulking. This system, where two parts of the same adventitious root display different developmental fates, was used by us in order to better characterize the anatomical, physiological, and molecular mechanisms involved in sweetpotato storage-root formation. We show that, as early as 1 and 2 weeks after planting, the proximal part of the root exhibited enhanced xylem development together with increased/massive lignin deposition, while, at the same time, the distal root part exhibited significantly elevated starch accumulation. In accordance with these developmental differences, the proximal root part exhibited up-regulated transcript levels of sweetpotato orthologs of Arabidopsis vascular-development regulators and key genes of lignin biosynthesis, while the distal part showed up-regulation of genes encoding enzymes of starch biosynthesis. All these recorded differences between proximal and distal root parts were further enhanced at 5 weeks after planting, when storage roots were formed at the distal part. Our results point to down-regulation of fiber formation and lignification, together with up-regulation of starch biosynthesis, as the main events underlying storage-root formation, marking/highlighting several genes as potential regulators, providing a valuable database of genes for further research.

8.
J Exp Bot ; 60(13): 3891-908, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19628571

RESUMO

Above-optimal temperatures reduce yield in tomato largely because of the high heat stress (HS) sensitivity of the developing pollen grains. The high temperature response, especially at this most HS-sensitive stage of the plant, is poorly understood. To obtain an overview of molecular mechanisms underlying the HS response (HSR) of microspores, a detailed transcriptomic analysis of heat-stressed maturing tomato microspores was carried out using a combination of Affymetrix Tomato Genome Array and cDNA-amplified fragment length polymorphism (AFLP) techniques. The results were corroborated by reverse transcription-PCR (RT-PCR) and immunoblot analyses. The data obtained reveal the involvement of specific members of the small heat shock protein (HSP) gene family, HSP70 and HSP90, in addition to the HS transcription factors A2 (HSFA2) and HSFA3, as well as factors other than the classical HS-responsive genes. The results also indicate HS regulation of reactive oxygen species (ROS) scavengers, sugars, plant hormones, and regulatory genes that were previously implicated in other types of stress. The use of cDNA-AFLP enabled the detection of genes representing pollen-specific functions that are missing from the tomato Affymetrix chip, such as those involved in vesicle-mediated transport and a pollen-specific, calcium-dependent protein kinase (CDPK2). For several genes, including LeHSFA2, LeHSP17.4-CII, as well as homologues of LeHSP90 and AtVAMP725, higher basal expression levels were detected in microspores of cv. Hazera 3042 (a heat-tolerant cultivar) compared with microspores of cv. Hazera 3017 (a heat-sensitive cultivar), marking these genes as candidates for taking part in microspore thermotolerance. This work provides a comprehensive analysis of the molecular events underlying the HSR of maturing microspores of a crop plant, tomato.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Front Plant Sci ; 10: 1320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849998

RESUMO

Sweetpotato yield depends on a change in the developmental fate of adventitious roots into storage-roots. The mechanisms underlying this developmental switch are still unclear. We examined the hypothesis claiming that regulation of root lignification determines storage-root formation. We show that application of the plant hormone gibberellin increased stem elongation and root gibberellin levels, while having inhibitory effects on root system parameters, decreasing lateral root number and length, and significantly reducing storage-root number and diameter. Furthermore, gibberellin enhanced root xylem development, caused increased lignin deposition, and, at the same time, decreased root starch accumulation. In accordance with these developmental effects, gibberellin application upregulated expression levels of sweetpotato orthologues of Arabidopsis vascular development regulators (IbNA075, IbVND7, and IbSND2) and of lignin biosynthesis genes (IbPAL, IbC4H, Ib4CL, IbCCoAOMT, and IbCAD), while downregulating starch biosynthesis genes (IbAGPase and IbGBSS) in the roots. Interestingly, gibberellin downregulated root expression levels of orthologues of the Arabidopsis BREVIPEDICELLUS transcription factor (IbKN2 and IbKN3), regulator of meristem maintenance. The results substantiate our hypothesis and mark gibberellin as an important player in regulation of sweetpotato root development, suggesting that increased fiber formation and lignification inhibit storage-root formation and yield. Taken together, our findings provide insight into the mechanisms underlying sweetpotato storage-root formation and provide a valuable database of genes for further research.

10.
Plant Reprod ; 31(4): 367-383, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29948007

RESUMO

KEY MESSAGE: Tomato pollen grains have the capacity for ethylene production, possessing specific components of the ethylene-biosynthesis and -signaling pathways, being affected/responsive to high-temperature conditions. Exposure of plants to heat stress (HS) conditions reduces crop yield and quality, mainly due to sensitivity of pollen grains. Recently, it was demonstrated that ethylene, a gaseous plant hormone, plays a significant role in tomato pollen heat-tolerance. It is not clear, however, whether, or to what extent, pollen grains are dependent on the capacity of the surrounding anther tissues for ethylene synthesis and signaling, or can synthesize this hormone and possess an active signaling pathway. The aim of this work was (1) to investigate if isolated, maturing and mature, tomato pollen grains have the capacity for ethylene production, (2) to find out whether pollen grains possess an active ethylene-biosynthesis and -signaling pathway and characterize the respective tomato pollen components at the transcript level, (3) to look into the effect of short-term HS conditions. Results from accumulation studies showed that pollen, anthers, and flowers produced ethylene and HS affected differentially ethylene production by (rehydrated) mature pollen, compared to anthers and flowers, causing elevated ethylene levels. Furthermore, several ethylene synthesis genes were expressed, with SlACS3 and SlACS11 standing out as highly HS-induced genes of the pollen ethylene biosynthesis pathway. Specific components of the ethylene-signaling pathway as well as several ethylene-responsive factors were expressed in pollen, with SlETR3 (ethylene receptor; named also NR, for never ripe) and SlCTR2 (constitutive triple response2) being HS responsive. This work shows that tomato pollen grains have the capacity for ethylene production, possessing active ethylene-biosynthesis and -signaling pathways, highlighting specific pollen components that serve as a valuable resource for future research on the role of ethylene in pollen thermotolerance.


Assuntos
Etilenos/biossíntese , Pólen/metabolismo , Solanum lycopersicum/fisiologia , Termotolerância , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Transdução de Sinais
11.
Front Plant Sci ; 9: 1558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483278

RESUMO

Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.

12.
Plant Reprod ; 29(1-2): 93-105, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016360

RESUMO

KEY MESSAGE: Pollen thermotolerance. Global warming is predicted to increase the frequency and severity of extreme weather phenomena such as heat waves thereby posing a major threat for crop productivity and food security. The yield in case of most crop species is dependent on the success of reproductive development. Pollen development has been shown to be highly sensitive to elevated temperatures while the development of the female gametophyte as well as sporophytic tissues might also be disturbed under mild or severe heat stress conditions. Therefore, assessing pollen thermotolerance is currently of high interest for geneticists, plant biologists and breeders. A key aspect in pollen thermotolerance studies is the selection of the appropriate heat stress regime, the developmental stage that the stress is applied to, as well as the method of application. Literature search reveals a rather high variability in heat stress treatments mainly due to the lack of standardized protocols for different plant species. In this review, we summarize and discuss experimental approaches that have been used in various crops, with special focus on tomato, rice and wheat, as the best studied crops regarding pollen thermotolerance. The overview of stress treatments and the major outcomes of each study aim to provide guidelines for similar research in other crops.


Assuntos
Produtos Agrícolas/fisiologia , Temperatura Alta , Pólen/fisiologia , Termotolerância , Estresse Fisiológico
13.
Sci Rep ; 6: 18645, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26727353

RESUMO

There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the ß-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.


Assuntos
Genes de Plantas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Propanóis/metabolismo , Zea mays/genética , Vias Biossintéticas , Metabolismo dos Carboidratos , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Fenótipo , Fotossíntese , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Amido/metabolismo
14.
Bioinform Biol Insights ; 10: 185-207, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695302

RESUMO

Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.

15.
Methods Mol Biol ; 1284: 481-501, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757788

RESUMO

Sequencing costs are falling, but the cost of data analysis remains high, often because unforeseen problems arise, such as insufficient depth of sequencing or batch effects. Experimenting with data analysis methods during the planning phase of an experiment can reveal unanticipated problems and build valuable bioinformatics expertise in the organism or process being studied. This protocol describes using R Markdown and RStudio, user-friendly tools for statistical analysis and reproducible research in bioinformatics, to analyze and document the analysis of an example RNA-Seq data set from tomato pollen undergoing chronic heat stress. Also, we show how to use Integrated Genome Browser to visualize read coverage graphs for differentially expressed genes. Applying the protocol described here and using the provided data sets represent a useful first step toward building RNA-Seq data analysis expertise in a research group.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA , Software , Navegador , Biologia Computacional/métodos , Genômica/métodos , Solanum lycopersicum/genética
16.
Trends Plant Sci ; 19(7): 419-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24630073

RESUMO

It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.


Assuntos
Produtos Agrícolas/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Agricultura , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos , Humanos , Raízes de Plantas/crescimento & desenvolvimento , Tubérculos/anatomia & histologia , Tubérculos/crescimento & desenvolvimento
17.
AoB Plants ; 2012: pls024, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23050072

RESUMO

BACKGROUND AND AIMS: Exposure to higher-than-optimal temperatures reduces crop yield and quality, mainly due to sensitivity of developing pollen grains. The mechanisms maintaining high pollen quality under heat-stress conditions are poorly understood. Our recently published data indicate high heat-stress-induced expression of ethylene-responsive genes in tomato pollen, indicating ethylene involvement in the pollen heat-stress response. Here we elucidated ethylene's involvement in pollen heat-stress response and thermotolerance by assessing the effects of interfering with the ethylene signalling pathway and altering ethylene levels on tomato pollen functioning under heat stress. METHODOLOGY: Plants of the ethylene-insensitive mutant Never ripe (Nr)-defective in an ethylene response sensor (ERS)-like ethylene receptor-and the corresponding wild type were exposed to control or heat-stress growing conditions, and pollen quality was determined. Starch and carbohydrates were measured in isolated pollen grains from these plants. The effect of pretreating cv. Micro-Tom tomato plants, prior to heat-stress exposure, with an ethylene releaser or inhibitor of ethylene biosynthesis on pollen quality was assessed. PRINCIPAL RESULTS: Never ripe pollen grains exhibited higher heat-stress sensitivity, manifested by a significant reduction in the total number of pollen grains, reduction in the number of viable pollen and elevation of the number of non-viable pollen, compared with wild-type plants. Mature Nr pollen grains accumulated only 40 % of the sucrose level accumulated by the wild type. Pretreatment of tomato plants with an ethylene releaser increased pollen quality under heat stress, with an over 5-fold increase in the number of germinating pollen grains per flower. Pretreatment with an ethylene biosynthesis inhibitor reduced the number of germinating pollen grains following heat-stress exposure over 5-fold compared with non-treated controls. CONCLUSIONS: Ethylene plays a significant role in tomato pollen thermotolerance. Interfering with the ethylene signalling pathway or reducing ethylene levels increased tomato pollen sensitivity to heat stress, whereas increasing ethylene levels prior to heat-stress exposure increased pollen quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA