Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(6): 711-721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582955

RESUMO

BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.


Assuntos
Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores
2.
Cancer Cell ; 42(5): 850-868.e9, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670091

RESUMO

TP53-mutant blood cancers remain a clinical challenge. BH3-mimetic drugs inhibit BCL-2 pro-survival proteins, inducing cancer cell apoptosis. Despite acting downstream of p53, functional p53 is required for maximal cancer cell killing by BH3-mimetics through an unknown mechanism. Here, we report p53 is activated following BH3-mimetic induced mitochondrial outer membrane permeabilization, leading to BH3-only protein induction and thereby potentiating the pro-apoptotic signal. TP53-deficient lymphomas lack this feedforward loop, providing opportunities for survival and disease relapse after BH3-mimetic treatment. The therapeutic barrier imposed by defects in TP53 can be overcome by direct activation of the cGAS/STING pathway, which promotes apoptosis of blood cancer cells through p53-independent BH3-only protein upregulation. Combining clinically relevant STING agonists with BH3-mimetic drugs efficiently kills TRP53/TP53-mutant mouse B lymphoma, human NK/T lymphoma, and acute myeloid leukemia cells. This represents a promising therapy regime that can be fast-tracked to tackle TP53-mutant blood cancers in the clinic.


Assuntos
Apoptose , Proteínas de Membrana , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Humanos , Animais , Camundongos , Proteínas de Membrana/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Mutação , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fragmentos de Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética
3.
Cell Death Dis ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414459

RESUMO

The IκB kinase complex, consisting of IKK1, IKK2 and the regulatory subunit NEMO, is required for NF-κB signalling following the activation of several cell surface receptors, such as members of the Tumour Necrosis Factor Receptor superfamily and the Interleukin-1 Receptor. This is critical for haematopoietic cell proliferation, differentiation, survival and immune responses. To determine the role of IKK in the regulation of haematopoiesis, we used the Rosa26Cre-ERT2 Cre/lox recombination system to achieve targeted, haematopoietic cell-restricted deletion of the genes for IKK1 or IKK2 in vivo. We found that the IKK complex plays a critical role in haematopoietic cell development and function. Deletion of IKK2, but not loss of IKK1, in haematopoietic cells led to an expansion of CD11b/Gr-1-positive myeloid cells (neutrophilia), severe anaemia and thrombocytosis, with reduced numbers of long-term haematopoietic stem cells (LT-HSCs), short-term haematopoietic stem cells (ST-HSCs) and multipotential progenitor cells (MPPs), increased circulating interleukin-6 (IL-6) and severe gastrointestinal inflammation. These findings identify distinct functions for the two IKK catalytic subunits, IKK1 and IKK2, in the haematopoietic system.


Assuntos
Gastrite/imunologia , Hematopoese/imunologia , Quinase I-kappa B/imunologia , Interleucina-6/imunologia , Células-Tronco/imunologia , Animais , Diferenciação Celular , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Células-Tronco/citologia
4.
Blood Adv ; 4(20): 5062-5077, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33080008

RESUMO

The specific targeting of inhibitor of apoptosis (IAP) proteins by Smac-mimetic (SM) drugs, such as birinapant, has been tested in clinical trials of acute myeloid leukemia (AML) and certain solid cancers. Despite their promising safety profile, SMs have had variable and limited success. Using a library of more than 5700 bioactive compounds, we screened for approaches that could sensitize AML cells to birinapant and identified multidrug resistance protein 1 inhibitors (MDR1i) as a class of clinically approved drugs that can enhance the efficacy of SM therapy. Genetic or pharmacological inhibition of MDR1 increased intracellular levels of birinapant and sensitized AML cells from leukemia murine models, human leukemia cell lines, and primary AML samples to killing by birinapant. The combination of clinical MDR1 and IAP inhibitors was well tolerated in vivo and more effective against leukemic cells, compared with normal hematopoietic progenitors. Importantly, birinapant combined with third-generation MDR1i effectively killed murine leukemic stem cells (LSCs) and prolonged survival of AML-burdened mice, suggesting a therapeutic opportunity for AML. This study identified a drug combination strategy that, by efficiently killing LSCs, may have the potential to improve outcomes in patients with AML.


Assuntos
Leucemia Mieloide Aguda , Animais , Disponibilidade Biológica , Dipeptídeos , Humanos , Indóis , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA