Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 35(14): 4177-4184, 1996 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-11666626

RESUMO

A total of 29 transition metals (all except Tc), all as ions M(+), have been reacted with gaseous S(8). The reactivities and reaction products provide a unique set of comparative data on a fundamental reaction of the elements. The results underlie the interpretation of many other processes and compounds in condensed phases. Series of product ions [MS(y)()](+) are formed, with y generally starting at 4, and increasing with time through 8 up to 10, 12, 16, or 21 (for La(+)). A general mechanism is proposed, in which the first {MS(8)}(+) encounter complex is reactive and undergoes S-S bond scission and rearrangement around the metal, such that [MS(8)](+) is not an early product. The early transition metals react faster than later members of the series, and third row metals react about twice as fast as first row metals. The metals which are more chalcophilic in condensed-phase chemistry are apparently less so as M(+); Hg(+) does not form observable [HgS(y)()](+) (except for a very low yield of [HgS(3)](+)) and is remarkably less reactive with sulfur than most of the other metal ions. Simple electron transfer between M(+) and S(8) does not occur except possibly for Ir(+), but S(8)(+) is sometimes observed and is believed to be formed by electron transfer from S(8) to some [MS(y)()](+) complexes. Interpretation of the rates of reaction of the ions of groups 3, 4, and 5 with S(8) is complicated because they react with adventitious water in the cell forming oxo-species. The results are discussed in the context of condensed-phase metal polysulfide chemistry.

2.
J Am Soc Mass Spectrom ; 22(8): 1420-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21953197

RESUMO

The reaction between CO(2) and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d(4)-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN(-), NCO(-) and facile neutral losses of CO(2) and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (-CO(2), 44 mass units), loss of 46 mass units and the fragments NCO(-) (m/z 42) and CN(-) (m/z 26). We also report low energy CID results for the dicarbamate dianion ((-)O(2)CNHC(2)H(4)NHCO(2)(-)) commonly encountered in CO(2) capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO(2) capture products could lead to dynamic operational tuning of CO(2) capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies.

3.
Phys Chem Chem Phys ; 7(8): 1687-93, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19787926

RESUMO

The ion-molecule reactions of laser-generated radical clusters SnxO(x+1)(-) (x = 1-6), SnxO(x-1)(+) (x = 1-6) and SnxOx(+) (x = 2, 3) with the reagents H2S and CH3OH have been investigated using FTICR-MS. For the hypermetallic cations SnxO(x-1)(+), the rates of the sulfur-for-oxygen substitution reactions with H2S appear to be sensitive to LDA/DFT-predicted oxygen binding modes, with mu3-O modes relatively inert with respect to mu-O conformations. The reactions of the hypometallic anions SnxO(x+1)(-) with H2S were dominated by proton transfer, although S-for-O substitution was observed to be kinetically competitive. The rates of the proton transfer were found to vary with both the reagent and cluster anion, and an analysis of the reaction kinetics for SnxO(x+1)(-) afforded the relative cluster proton affinities: PA(Sn2O3-) > PA(SnO2-) >> PA(Sn3O4-) > PA(Sn5O6-) approximately PA(Sn6O7-) approximately PA(CH3O-) = 381 +/- 2 kcal mol(-1) > PA(Sn-) = 352 +/- 10 kcal mol(-1). Ion-molecule reaction results for the hypermetallic cations x = 2-5 with CH3OH are suggestive of gas-phase coordination chemistry, with each cluster undergoing one slow association reaction. A recurrent theme of the chemistry of ionic SnxOy is the initial activation or generation of OySnx(-/+)-OH bonds by a radical mechanism involving hydrogen or hydroxyl abstraction from the reagent. The resulting cluster-hydroxyl bonds are relatively labile with respect to conversion to alkoxy ligands.


Assuntos
Análise de Fourier , Espectrometria de Massas , Nanopartículas/química , Estanho/química , Ciclotrons , Sulfeto de Hidrogênio/química , Metanol/química
4.
J Phys Chem A ; 109(1): 157-64, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16839101

RESUMO

Yttrium- and lanthanum-carbide cluster cations YC(n)(+) and LaC(n)(+) (n = 2, 4, and 6) are generated by laser ablation of carbonaceous material containing Y(2)O(3) or La(2)O(3). YC(2)(+), YC(4)(+), LaC(2)(+), LaC(4)(+), and LaC(6)(+) are selected to undergo gas-phase ion-molecule reactions with benzene and cyclohexane. The FTICR mass spectrometry study shows that the reactions of YC(2)(+) and LaC(2)(+) with benzene produce three main series of cluster ions. They are in the form of M(C(6)H(4))(C(6)H(6))(n)(+), M(C(8)H(4))(C(6)H(6))(n)(+), and M(C(8)H(6))(C(6)H(6))(m)(+) (M = Y and La; n = 0-3; m = 0-2). For YC(4)(+), LaC(4)(+), and LaC(6)(+), benzene addition products in the form of MC(n)(C(6)H(6))(m)(+) (M = Y and La; n = 4, 6; m = 1, 2) are observed. In the reaction with cyclohexane, all the metal-carbide cluster ions are observed to form metal-benzene complexes M(C(6)H(6))(n)(+) (M = Y and La; n= 1-3). Collision-induced-dissociation experiments were performed on the major reaction product ions, and the different levels of energy required for the fragmentation suggest that both covalent bonding and weak electrostatic interaction exist in these organometallic complexes. Several major product ions were calculated using DFT theory, and their ground-state geometries and energies were obtained.

5.
Inorg Chem ; 41(13): 3560-9, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12079479

RESUMO

The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA