Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167256

RESUMO

While both virulent and putatively avirulent Yersinia ruckeri strains exist in aquaculture environments, the relationship between the distribution of virulence-associated factors and de facto pathogenicity in fish remains poorly understood. Pan-genome analysis of 18 complete genomes, representing established virulent and putatively avirulent lineages of Y. ruckeri, revealed the presence of a number of accessory genetic determinants. Further investigation of 68 draft genome assemblies revealed that the distribution of certain putative virulence factors correlated well with virulence and host-specificity. The inverse-autotransporter invasin locus yrIlm was, however, the only gene present in all virulent strains, while absent in lineages regarded as avirulent. Strains known to be associated with significant mortalities in salmonid aquaculture display a combination of serotype O1-LPS and yrIlm, with the well-documented highly virulent lineages, represented by MLVA clonal complexes 1 and 2, displaying duplication of the yrIlm locus. Duplication of the yrIlm locus was further found to have evolved over time in clonal complex 1, where some modern, highly virulent isolates display up to three copies.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Yersiniose , Animais , Yersinia ruckeri/genética , Virulência/genética , Sorogrupo
2.
Front Microbiol ; 14: 1173287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266008

RESUMO

Escherichia coli belonging to multilocus sequence type 38 (ST38) is a well-known cause of extra-intestinal infections in humans, and are frequently associated with resistance to extended-spectrum cephalosporins (ESCs). Resistance to carbapenems, mediated by blaOXA-genes has also been reported in this ST. Recently, the European Centre for Disease Prevention and Control (ECDC) released a rapid risk assessment on the increased detection of OXA-244 producing E. coli ST38 in humans, requesting further knowledge to determine the source. ST38 is also one of the most common STs among ESC-resistant E. coli from broiler production. Our aim was to investigate the genetic characteristics and relationship between E. coli ST38 from broiler production and humans, and to investigate if there has been a potential spillover between these sources. A total of 288 E. coli ST38 genomes isolated from humans in Europe (collected 2009-2019) and from Nordic broiler production (collected 2011-2014) were analyzed. The results showed distinct monophyletic clades associated to humans and broiler production. Furthermore, there were differences in the ESC resistance genes present in E. coli ST38 from the two sources. The blaOXA-244 gene was not present in E. coli from broiler production. Our results show that ST38 from humans and broiler production belong to well-separated clades, and suggest that the increased detection of OXA-244-producing E. coli ST38 in humans is not associated with spillover from broiler production.

3.
Front Microbiol ; 11: 938, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508776

RESUMO

Quinolones are important antimicrobials for both humans and animals, and resistance toward these compounds is a serious threat to public health. In Norway, quinolone resistant E. coli (QREC) have been detected at low levels in a high proportion of broiler flocks, even without the use of quinolones in rearing of broilers. Due to the pyramidal structure of broiler breeding, QREC isolates may be disseminated from grandparent animals down through the pyramid. However, quinolone resistance can also develop in wild type E. coli through specific chromosomal mutations, and by horizontal acquisition of plasmid-mediated quinolone resistance genes. The goal of this study was to determine whether QREC is disseminated through the broiler breeding pyramid or developed locally at some stage in the broiler production chain. For this purpose, we whole genome sequenced wild type- and QREC isolates from broiler and parent flocks that had been isolated in the Norwegian monitoring program for antimicrobial resistance in feed, food and animals (NORM-VET) between 2006 and 2017, from 22 different production sites. The sequencing data was used for typing of the isolates, phylogenetic analysis and identification of relevant resistance mechanisms. Highly similar QREC isolates were identified within major sequence types from multiple production sites, suggesting dissemination of QREC isolates in the broiler production chain. The occurrence of potential resistance development among the WT E. coli was low, indicating that this may be a rare phenomenon in the Norwegian broiler production. The results indicate that the majority of the observed QREC at the bottom of the broiler production pyramid originates from parent or grandparent animals. These results highlight the importance of surveillance at all levels of the broiler production pyramid and of implementation of proper biosecurity measures to control dissemination of QREC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA