Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36944331

RESUMO

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Assuntos
Imunodeficiência Combinada Severa , Linfócitos T , Humanos , Animais , Camundongos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Edição de Genes , Camundongos SCID , Complexo CD3 , Receptores de Antígenos de Linfócitos T/genética
2.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341660

RESUMO

MOTIVATION: The ongoing expansion in the volume of biomedical data has contributed to a growing complexity in the tools and technologies used in research with an increased reliance on complex workflows written in orchestration languages such as Nextflow to integrate algorithms into processing pipelines. The growing use of workflows involving various tools and algorithms has led to increased scrutiny of software development practices to avoid errors in individual tools and in the connections between them. RESULTS: To facilitate test-driven development of Nextflow pipelines, we created NFTest, a framework for automated pipeline testing and validation with customizability options for Nextflow features. It is open-source, easy to initialize and use, and customizable to allow for testing of complex workflows with test success configurable through a broad range of assertions. NFTest simplifies the testing burden on developers by automating tests once defined and providing a flexible interface for running tests to validate workflows. This reduces the barrier to rigorous biomedical workflow testing and paves the way toward reducing computational errors in biomedicine. AVAILABILITY AND IMPLEMENTATION: NFTest is an open-source Python framework under the GPLv2 license and is freely available at https://github.com/uclahs-cds/tool-NFTest. The call-sSNV Nextflow pipeline is available at: https://github.com/uclahs-cds/pipeline-call-sSNV.


Assuntos
Biologia Computacional , Software , Algoritmos , Idioma , Fluxo de Trabalho
3.
J Hered ; 115(2): 221-229, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38305464

RESUMO

Island oak (Quercus tomentella) is a rare relictual island tree species that exists only on six islands off the coast of California and Mexico, but was once widespread throughout mainland California. Currently, this species is endangered by threats such as non-native plants, grazing animals, and human removal. Efforts for conservation and restoration of island oak currently underway could benefit from information about its range-wide genetic structure and evolutionary history. Here we present a high-quality genome assembly for Q. tomentella, assembled using PacBio HiFi and Omni-C sequencing, developed as part of the California Conservation Genomics Project (CCGP). The resulting assembly has a length of 781 Mb, with a contig N50 of 22.0 Mb and a scaffold N50 of 63.4 Mb. This genome assembly will provide a resource for genomics-informed conservation of this rare oak species. Additionally, this reference genome will be the first one available for a species in Quercus section Protobalanus, a unique oak clade present only in western North America.


Assuntos
Quercus , Árvores , Animais , Humanos , Árvores/genética , Genômica , México , América do Norte
4.
J Phycol ; 59(1): 54-69, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36199194

RESUMO

Diatoms are single-celled microalgae with silica-based cell walls (frustules) that are abundantly present in aquatic habitats, and form the basis of the food chain in many ecosystems. Many benthic diatoms have the remarkable ability to glide on all natural or man-made underwater surfaces using a carbohydrate- and protein-based adhesive to generate traction. Previously, three glycoproteins, termed FACs (Frustule Associated Components), have been identified from the common fouling diatom Craspedostauros australis and were implicated in surface adhesion through inhibition studies with a glycan-specific antibody. The polypeptide sequences of FACs remained unknown, and it was unresolved whether the FAC glycoproteins are indeed involved in adhesion, or whether this is achieved by different components sharing the same glycan epitope with FACs. Here we have determined the polypeptide sequences of FACs using peptide mapping by LC-MS/MS. Unexpectedly, FACs share the same polypeptide backbone (termed CaFAP1), which has a domain structure of alternating Cys-rich and Pro-Thr/Ser-rich regions reminiscent of the gel-forming mucins. By developing a genetic transformation system for C. australis, we were able to directly investigate the function of CaFAP1-based glycoproteins in vivo. GFP-tagging of CaFAP1 revealed that it constitutes a coat around all parts of the frustule and is not an integral component of the adhesive. CaFAP1-GFP producing transformants exhibited the same properties as wild type cells regarding surface adhesion and motility speed. Our results demonstrate that FAC glycoproteins are not involved in adhesion and motility, but might rather act as a lubricant to prevent fouling of the diatom surface.


Assuntos
Diatomáceas , Diatomáceas/genética , Mucinas/metabolismo , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem , Glicoproteínas/metabolismo
5.
J Hered ; 114(5): 570-579, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37335172

RESUMO

Juglans californica, California walnut, is a vulnerable small tree that is locally abundant but restricted to woodland and chaparral habitats of Southern California threatened by urbanization and land use change. This species is the dominant species in a unique woodland ecosystem in California. It is one of 2 endemic California walnut species (family Juglandaceae). The other species, Northern California black walnut (J. hindsii), has been suggested controversially to be a variety of J. californica. Here, we report a new, chromosome-level assembly of J. californica as part of the California Conservation Genomics Project (CCGP). Consistent with the CCGP common methodology across ~150 genomes, we used Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 137 scaffolds spanning 551,065,703 bp, has a contig N50 of 30 Mb, a scaffold N50 of 37 Mb, and BUSCO complete score of 98.9%. Additionally, the mitochondrial genome has 701,569 bp. In addition, we compare this genome with other existing high-quality Juglans and Quercus genomes, which are in the same order (Fagales) and show relatively high synteny within the Juglans genomes. Future work will utilize the J. californica genome to determine its relationship with the Northern California walnut and assess the extent to which these 2 endemic trees might be at risk from fragmentation and/or climate warming.


Assuntos
Juglans , Juglans/genética , Ecossistema , Genoma , Genômica/métodos , California
6.
Mol Ecol ; 31(24): 6515-6530, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205603

RESUMO

Habitat loss, flood control infrastructure, and drought have left most of southern California and northern Baja California's native freshwater fish near extinction, including the endangered unarmoured threespine stickleback (Gasterosteus aculeatus williamsoni). This subspecies, an unusual morph lacking the typical lateral bony plates of the G. aculeatus complex, occurs at arid southern latitudes in the eastern Pacific Ocean and survives in only three inland locations. Managers have lacked molecular data to answer basic questions about the ancestry and genetic distinctiveness of unarmoured populations. These data could be used to prioritize conservation efforts. We sampled G. aculeatus from 36 localities and used microsatellites and whole genome data to place unarmoured populations within the broader evolutionary context of G. aculeatus across southern California/northern Baja California. We identified three genetic groups with none consisting solely of unarmoured populations. Unlike G. aculeatus at northern latitudes, where Pleistocene glaciation has produced similar historical demographic profiles across populations, we found markedly different demographics depending on sampling location, with inland unarmoured populations showing steeper population declines and lower heterozygosity compared to low armoured populations in coastal lagoons. One exception involved the only high elevation population in the region, where the demography and alleles of unarmoured fish were similar to low armoured populations near the coast, exposing one of several cases of artificial translocation. Our results suggest that the current "management-by-phenotype" approach, based on lateral plates, is incidentally protecting the most imperilled populations; however, redirecting efforts toward evolutionary units, regardless of phenotype, may more effectively preserve adaptive potential.


Assuntos
Smegmamorpha , Animais , México , Smegmamorpha/genética , Evolução Biológica , Repetições de Microssatélites , Demografia
7.
Proc Natl Acad Sci U S A ; 116(50): 25179-25185, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767740

RESUMO

Climate change over the next century is predicted to cause widespread maladaptation in natural systems. This prediction, as well as many sustainable management and conservation practices, assumes that species are adapted to their current climate. However, this assumption is rarely tested. Using a large-scale common garden experiment combined with genome-wide sequencing, we found that valley oak (Quercus lobata), a foundational tree species in California ecosystems, showed a signature of adaptational lag to temperature, with fastest growth rates occurring at cooler temperatures than populations are currently experiencing. Future warming under realistic emissions scenarios was predicted to lead to further maladaptation to temperature and reduction in growth rates for valley oak. We then identified genotypes predicted to grow relatively fast under warmer temperatures and demonstrated that selecting seed sources based on their genotype has the potential to mitigate predicted negative consequences of future climate warming on growth rates in valley oak. These results illustrate that the belief of local adaptation underlying many management and conservation practices, such as using local seed sources for restoration, may not hold for some species. If contemporary adaptational lag is commonplace, we will need new approaches to help alleviate predicted negative consequences of climate warming on natural systems. We present one such approach, "genome-informed assisted gene flow," which optimally matches individuals to future climates based on genotype-phenotype-environment associations.


Assuntos
Adaptação Fisiológica , Fluxo Gênico , Genoma de Planta , Quercus/genética , California , Mudança Climática , Ecossistema , Genótipo , Quercus/fisiologia , Temperatura
8.
Proc Natl Acad Sci U S A ; 116(37): 18597-18606, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31439817

RESUMO

Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell-cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Ciprofloxacina/farmacologia , Reposicionamento de Medicamentos , Flucitosina/farmacologia , Melioidose/tratamento farmacológico , Animais , Burkholderia pseudomallei/patogenicidade , Ciprofloxacina/análogos & derivados , Ciprofloxacina/uso terapêutico , Citoplasma/efeitos dos fármacos , Citoplasma/microbiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Flucitosina/uso terapêutico , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Melioidose/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Virulência
9.
Mol Ecol ; 30(2): 406-423, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179370

RESUMO

Understanding how the environment shapes genetic variation provides critical insight about the evolution of local adaptation in natural populations. At multiple spatial scales and multiple geographic contexts within a single species, such information could address a number of fundamental questions about the scale of local adaptation and whether or not the same loci are involved at different spatial scales or geographic contexts. We used landscape genomic approaches from three local elevational transects and rangewide sampling to (a) identify genetic variation underlying local adaptation to environmental gradients in the California endemic oak, Quercus lobata; (b) examine whether putatively adaptive SNPs show signatures of selection at multiple spatial scales; and (c) map putatively adaptive variation to assess the scale and pattern of local adaptation. Of over 10 k single-nucleotide polymorphisms (SNPs) generated with genotyping-by-sequencing, we found signatures of natural selection by climate or local environment at over 600 SNPs (536 loci), some at multiple spatial scales across multiple analyses. Candidate SNPs identified with gene-environment tests (LFMM) at the rangewide scale also showed elevated associations with climate variables compared to the background at both rangewide and elevational transect scales with gradient forest analysis. Some loci overlap with those detected in other oak species, raising the question of whether the same loci might be involved in local climate adaptation in different congeneric species that inhabit different geographic contexts. Mapping landscape patterns of adaptive versus background genetic variation identified regions of marked local adaptation and suggests nonlinear association of candidate SNPs and environmental variables. Taken together, our results offer robust evidence for novel candidate genes for local climate adaptation at multiple spatial scales.


Assuntos
Quercus , Adaptação Fisiológica/genética , Clima , Genética Populacional , Genômica , Polimorfismo de Nucleotídeo Único/genética , Quercus/genética , Seleção Genética
10.
J Hered ; 112(7): 663-670, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34508641

RESUMO

Ancient introgression can be an important source of genetic variation that shapes the evolution and diversification of many taxa. Here, we estimate the timing, direction, and extent of gene flow between two distantly related oak species in the same section (Quercus sect. Quercus). We estimated these demographic events using genotyping by sequencing data, which generated 25 702 single nucleotide polymorphisms for 24 individuals of California scrub oak (Quercus berberidifolia) and 23 individuals of Engelmann oak (Quercus engelmannii). We tested several scenarios involving gene flow between these species using the diffusion approximation-based population genetic inference framework and model-testing approach of the Python package DaDi. We found that the most likely demographic scenario includes a bottleneck in Q. engelmannii that coincides with asymmetric gene flow from Q. berberidifolia into Q. engelmannii. Given that the timing of this gene flow coincides with the advent of a Mediterranean-type climate in the California Floristic Province, we propose that changing precipitation patterns and seasonality may have favored the introgression of climate-associated genes from the endemic into the non-endemic California oak.


Assuntos
Quercus , Clima , Fluxo Gênico , Genética Populacional , Humanos , Quercus/genética
11.
New Phytol ; 226(4): 1198-1212, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31609470

RESUMO

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Assuntos
Quercus , Fluxo Gênico , Genômica , Filogenia , Quercus/genética , Análise de Sequência de DNA
12.
Stem Cells ; 37(2): 284-294, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30372555

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.


Assuntos
Reparo do DNA/genética , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Humanos , Camundongos
13.
Nat Chem Biol ; 14(11): 1005-1009, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327558

RESUMO

Escherichia coli can derive all essential metabolites and cofactors through a highly evolved metabolic system. Damage of pathways may affect cell growth and physiology, but the strategies by which damaged metabolic pathways can be circumvented remain intriguing. Here, we use a ΔpanD (encoding for aspartate 1-decarboxylase) strain of E. coli that is unable to produce the ß-alanine required for CoA biosynthesis to demonstrate that metabolic systems can overcome pathway damage by extensively rerouting metabolic pathways and modifying existing enzymes for unnatural functions. Using directed cell evolution, rewiring and repurposing of uracil metabolism allowed formation of an alternative ß-alanine biosynthetic pathway. After this pathway was deleted, a second was evolved that used a gain-of-function mutation on ornithine decarboxylase (SpeC) to alter reaction and substrate specificity toward an oxidative decarboxylation-deamination reaction. After deletion of both pathways, yet another independent pathway emerged using polyamine biosynthesis, demonstrating the vast capacity of metabolic repair.


Assuntos
Carboxiliases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutamato Descarboxilase/metabolismo , Ornitina Descarboxilase/metabolismo , Poliaminas/química , Vias Biossintéticas , Carboxiliases/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glutamato Descarboxilase/genética , Malondialdeído/análogos & derivados , Malondialdeído/química , Mutação , Ornitina Descarboxilase/genética , Fenótipo , Mutação Puntual , Espectrofotometria , Especificidade por Substrato , Uracila/química , beta-Alanina/química
14.
Plant J ; 93(3): 545-565, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172250

RESUMO

Chlamydomonas reinhardtii is a unicellular chlorophyte alga that is widely studied as a reference organism for understanding photosynthesis, sensory and motile cilia, and for development of an algal-based platform for producing biofuels and bio-products. Its highly repetitive, ~205-kbp circular chloroplast genome and ~15.8-kbp linear mitochondrial genome were sequenced prior to the advent of high-throughput sequencing technologies. Here, high coverage shotgun sequencing was used to assemble both organellar genomes de novo. These new genomes correct dozens of errors in the prior genome sequences and annotations. Genome sequencing coverage indicates that each cell contains on average 83 copies of the chloroplast genome and 130 copies of the mitochondrial genome. Using protocols and analyses optimized for organellar transcripts, RNA-Seq was used to quantify their relative abundances across 12 different growth conditions. Forty-six percent of total cellular mRNA is attributable to high expression from a few dozen chloroplast genes. RNA-Seq data were used to guide gene annotation, to demonstrate polycistronic gene expression, and to quantify splicing of psaA and psbA introns. In contrast to a conclusion from a recent study, we found that chloroplast transcripts are not edited. Unexpectedly, cytosine-rich polynucleotide tails were observed at the 3'-end of all mitochondrial transcripts. A comparative genomics analysis of eight laboratory strains and 11 wild isolates of C. reinhardtii identified 2658 variants in the organellar genomes, which is 1/10th as much genetic diversity as is found in the nucleus.


Assuntos
Chlamydomonas reinhardtii/genética , DNA Mitocondrial/genética , Genoma de Cloroplastos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Chlamydomonas reinhardtii/citologia , Edição de Genes , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica/métodos , Anotação de Sequência Molecular , Organelas/genética , Splicing de RNA , Análise de Sequência de RNA/métodos
15.
Plant Cell ; 28(2): 367-87, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764374

RESUMO

The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Plantas/metabolismo , Proteoma , Genética Reversa , Triglicerídeos/metabolismo , Chlamydomonas reinhardtii/fisiologia , Cloroplastos/metabolismo , Mapeamento Cromossômico , Ácidos Graxos/metabolismo , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lipídeos/análise , Mutagênese Insercional , Mutação , Fenótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA
16.
Metab Eng ; 49: 153-163, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30107263

RESUMO

Engineering a microbial strain for production sometimes entails metabolic modifications that impair essential physiological processes for growth or production. Restoring these functions may require amending a variety of non-obvious physiological networks, and thus, rational design strategies may not be practical. Here we demonstrate that growth and production may be restored by evolution that repairs impaired metabolic function. Furthermore, we use genomics, metabolomics and proteomics to identify several underlying mutations and metabolic perturbations that allow metabolism to repair. Previously, high titers of butanol production were achieved by Escherichia coli using a growth-coupled, modified Clostridial CoA-dependent pathway after all native fermentative pathways were deleted. However, production was only observed in rich media. Native metabolic function of the host was unable to support growth and production in minimal media. We use directed cell evolution to repair this phenotype and observed improved growth, titers and butanol yields. We found a mutation in pcnB which resulted in decreased plasmid copy numbers and pathway enzymes to balance resource utilization. Increased protein abundance was measured for biosynthetic pathways, glycolytic enzymes have increased activity, and adenosyl energy charge was increased. We also found mutations in the ArcAB two-component system and integration host factor (IHF) that tune redox metabolism to alter byproduct formation. These results demonstrate that directed strain evolution can enable systematic adaptations to repair metabolic function and enhance microbial production. Furthermore, these results demonstrate the versatile repair capabilities of cell metabolism and highlight important aspects of cell physiology that are required for production in minimal media.


Assuntos
1-Butanol/metabolismo , Clostridium/genética , Evolução Molecular Direcionada , Proteínas de Escherichia coli , Escherichia coli , Microrganismos Geneticamente Modificados , Polinucleotídeo Adenililtransferase , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo
17.
BMC Microbiol ; 18(1): 19, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490612

RESUMO

BACKGROUND: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. RESULTS: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. CONCLUSIONS: Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Queijo/virologia , Genoma Viral , Filogenia , Propionibacterium acnes/virologia , Propionibacterium freudenreichii/virologia , Bacteriófagos/ultraestrutura , Composição de Bases , Sequência de Bases , Queijo/microbiologia , Mapeamento Cromossômico , Variação Genética , Genômica , Especificidade de Hospedeiro , Lisogenia , Anotação de Sequência Molecular , Prófagos/genética , Propionibacteriaceae/virologia , Propionibacterium/virologia , Sequenciamento Completo do Genoma
18.
Mol Ecol ; 27(22): 4556-4571, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30226013

RESUMO

A long-term debate in evolutionary biology is the extent to which reproductive isolation is a necessary element of speciation. Hybridizing plants in general are cited as evidence against this notion, and oaks specifically have been used as the classic example of species maintenance without reproductive isolation. Here, we use thousands of SNPs generated by RAD sequencing to describe the phylogeny of a set of sympatric white oak species in California and then test whether these species exhibit pervasive interspecific gene exchange. Using RAD sequencing, we first constructed a phylogeny of ten oak species found in California. Our phylogeny revealed that seven scrub oak taxa occur within one clade that diverged from a common ancestor with Q. lobata, that they comprise two subclades, and they are not monophyletic but include the widespread tree oak Q. douglasii. Next, we searched for genomic patterns of allele sharing consistent with gene flow between long-divergent tree oaks with scrub oaks. Specifically, we utilized the D-statistic as well as model-based inference to compare the signature of shared alleles between two focal tree species (Q. lobata and Q. engelmannii) with multiple scrub species within the two subclades. We found that introgression is not equally pervasive between sympatric tree and scrub oak species. Instead, gene flow commonly occurs from scrub oaks to recently sympatric Q. engelmannii, but less so from scrub oaks to long-sympatric Q. lobata. This case study illustrates the influence of ancient introgression and impact of reproductive isolating mechanisms in preventing indiscriminate interspecific gene exchange.


Assuntos
Fluxo Gênico , Genética Populacional , Hibridização Genética , Quercus/genética , Simpatria , Alelos , California , Evolução Molecular , Modelos Genéticos , Filogenia , Árvores/genética
19.
Plant Cell ; 27(9): 2335-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26307380

RESUMO

Chlamydomonas reinhardtii is a widely used reference organism in studies of photosynthesis, cilia, and biofuels. Most research in this field uses a few dozen standard laboratory strains that are reported to share a common ancestry, but exhibit substantial phenotypic differences. In order to facilitate ongoing Chlamydomonas research and explain the phenotypic variation, we mapped the genetic diversity within these strains using whole-genome resequencing. We identified 524,640 single nucleotide variants and 4812 structural variants among 39 commonly used laboratory strains. Nearly all (98.2%) of the total observed genetic diversity was attributable to the presence of two, previously unrecognized, alternate haplotypes that are distributed in a mosaic pattern among the extant laboratory strains. We propose that these two haplotypes are the remnants of an ancestral cross between two strains with ∼2% relative divergence. These haplotype patterns create a fingerprint for each strain that facilitates the positive identification of that strain and reveals its relatedness to other strains. The presence of these alternate haplotype regions affects phenotype scoring and gene expression measurements. Here, we present a rich set of genetic differences as a community resource to allow researchers to more accurately conduct and interpret their experiments with Chlamydomonas.


Assuntos
Chlamydomonas reinhardtii/genética , Variação Genética , Genoma de Planta , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Haplótipos , Laboratórios , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
20.
BMC Genet ; 19(1): 88, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285631

RESUMO

BACKGROUND: Hybridization and introgression are common phenomena among oak species. These processes can be beneficial by introducing favorable genetic variants across species (adaptive introgression). Given that drought is an important stress, impacting physiological and morphological variation and limiting distributions, our goal was to identify drought-related genes that might exhibit patterns of introgression influenced by natural selection. Using RNAseq, we sequenced whole transcriptomes of 24 individuals from three oaks in southern California: (Quercus engelmannii, Quercus berberidifolia, Quercus cornelius-mulleri) and identified genetic variants to estimate admixture rates of all variants and those in drought genes. RESULTS: We found 398,042 variants across all loci and 4352 variants in 139 drought candidate genes. STRUCTURE analysis of all variants revealed the majority of our samples were assignable to a single species, but with several highly admixed individuals. When using drought-associated variants, the same individuals exhibited less admixture and their allele frequencies were more polarized between Engelmann and scrub oaks than when using the total gene set. These findings are consistent with the hypothesis that selection may act differently on functional genes, such as drought-associated genes, and point to candidate genes that are suggestive of divergent selection among species maintaining adaptive differences. For example, the drought genes that showed the strongest bias against engelmannii-fixed oak variants in scrub oaks were related to sugar transporter, coumarate-coA ligases, glutathione S-conjugation, and stress response. CONCLUSION: This pilot study illustrates that whole transcriptomes of individuals will provide useful data for identifying functional genes that contribute to adaptive divergence among hybridizing species.


Assuntos
Secas , Transferência Genética Horizontal , Genes de Plantas , Polimorfismo Genético , Quercus/genética , Estresse Fisiológico , Evolução Molecular , Perfilação da Expressão Gênica , Quercus/fisiologia , Análise de Sequência de RNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA