Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Biol Sci ; 290(2013): 20232177, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113937

RESUMO

Baleen whales (mysticetes) include the largest animals on the Earth. How they achieved such gigantic sizes remains debated, with previous research focusing primarily on when mysticetes became large, rather than where. Here, we describe an edentulous baleen whale fossil (21.12-16.39 mega annum (Ma)) from South Australia. With an estimated body length of 9 m, it is the largest mysticete from the Early Miocene. Analysing body size through time shows that ancient baleen whales from the Southern Hemisphere were larger than their northern counterparts. This pattern seemingly persists for much of the Cenozoic, even though southern specimens contribute only 19% to the global mysticete fossil record. Our findings contrast with previous ideas of a single abrupt shift towards larger size during the Plio-Pleistocene, which we here interpret as a glacially driven Northern Hemisphere phenomenon. Our results highlight the importance of incorporating Southern Hemisphere fossils into macroevolutionary patterns, especially in light of the high productivity of Southern Ocean environments.


Assuntos
Fósseis , Baleias , Animais , Tamanho Corporal , Austrália do Sul
2.
BMC Biol ; 19(1): 58, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781258

RESUMO

BACKGROUND: A major goal of evolutionary developmental biology is to discover general models and mechanisms that create the phenotypes of organisms. However, universal models of such fundamental growth and form are rare, presumably due to the limited number of physical laws and biological processes that influence growth. One such model is the logarithmic spiral, which has been purported to explain the growth of biological structures such as teeth, claws, horns, and beaks. However, the logarithmic spiral only describes the path of the structure through space, and cannot generate these shapes. RESULTS: Here we show a new universal model based on a power law between the radius of the structure and its length, which generates a shape called a 'power cone'. We describe the underlying 'power cascade' model that explains the extreme diversity of tooth shapes in vertebrates, including humans, mammoths, sabre-toothed cats, tyrannosaurs and giant megalodon sharks. This model can be used to predict the age of mammals with ever-growing teeth, including elephants and rodents. We view this as the third general model of tooth development, along with the patterning cascade model for cusp number and spacing, and the inhibitory cascade model that predicts relative tooth size. Beyond the dentition, this new model also describes the growth of claws, horns, antlers and beaks of vertebrates, as well as the fangs and shells of invertebrates, and thorns and prickles of plants. CONCLUSIONS: The power cone is generated when the radial power growth rate is unequal to the length power growth rate. The power cascade model operates independently of the logarithmic spiral and is present throughout diverse biological systems. The power cascade provides a mechanistic basis for the generation of these pointed structures across the tree of life.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Bico/crescimento & desenvolvimento , Casco e Garras/crescimento & desenvolvimento , Cornos/crescimento & desenvolvimento , Componentes Aéreos da Planta/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Invertebrados/crescimento & desenvolvimento , Modelos Biológicos , Desenvolvimento Vegetal , Vertebrados/crescimento & desenvolvimento
3.
Proc Biol Sci ; 287(1938): 20202318, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171079

RESUMO

Living true seals (phocids) are the most widely dispersed semi-aquatic marine mammals, and comprise geographically separate northern (phocine) and southern (monachine) groups. Both are thought to have evolved in the North Atlantic, with only two monachine lineages-elephant seals and lobodontins-subsequently crossing the equator. The third and most basal monachine tribe, the monk seals, have hitherto been interpreted as exclusively northern and (sub)tropical throughout their entire history. Here, we describe a new species of extinct monk seal from the Pliocene of New Zealand, the first of its kind from the Southern Hemisphere, based on one of the best-preserved and richest samples of seal fossils worldwide. This unanticipated discovery reveals that all three monachine tribes once coexisted south of the equator, and forces a profound revision of their evolutionary history: rather than primarily diversifying in the North Atlantic, monachines largely evolved in the Southern Hemisphere, and from this southern cradle later reinvaded the north. Our results suggest that true seals crossed the equator over eight times in their history. Overall, they more than double the age of the north-south dichotomy characterizing living true seals and confirms a surprisingly recent major change in southern phocid diversity.


Assuntos
Evolução Biológica , Focas Verdadeiras , Animais , Caniformia , Fósseis , Nova Zelândia , Filogenia
4.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179519

RESUMO

Living baleen whales (mysticetes) produce and hear the lowest-frequency (infrasonic) sounds among mammals. There is currently debate over whether the ancestor of crown cetaceans (Neoceti) was able to detect low frequencies. However, the lack of information on the most archaic fossil mysticetes has prevented us from determining the earliest evolution of their extreme acoustic biology. Here, we report the first anatomical analyses and frequency range estimation of the inner ear in Oligocene (34-23 Ma) fossils of archaic toothed mysticetes from Australia and the USA. The cochlear anatomy of these small fossil mysticetes resembles basilosaurid archaeocetes, but is also similar to that of today's baleen whales, indicating that even the earliest mysticetes detected low-frequency sounds, and lacked ultrasonic hearing and echolocation. This suggests that, in contrast to recent research, the plesiomorphic hearing condition for Neoceti was low frequency, which was retained by toothed mysticetes, and the high-frequency hearing of odontocetes is derived. Therefore, the low-frequency hearing of baleen whales has remained relatively unchanged over the last approximately 34 Myr, being present before the evolution of other signature mysticete traits, including filter feeding, baleen and giant body size.


Assuntos
Evolução Biológica , Tamanho Corporal , Comportamento Alimentar , Audição , Baleias , Animais , Austrália , Fósseis
5.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275142

RESUMO

The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Crânio/anatomia & histologia , Baleias/anatomia & histologia , Animais , Filogenia
6.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250183

RESUMO

Extant aquatic mammals are a key component of aquatic ecosystems. Their morphology, ecological role and behaviour are, to a large extent, shaped by their feeding ecology. Nevertheless, the nature of this crucial aspect of their biology is often oversimplified and, consequently, misinterpreted. Here, we introduce a new framework that categorizes the feeding cycle of predatory aquatic mammals into four distinct functional stages (prey capture, manipulation and processing, water removal and swallowing), and details the feeding behaviours that can be employed at each stage. Based on this comprehensive scheme, we propose that the feeding strategies of living aquatic mammals form an evolutionary sequence that recalls the land-to-water transition of their ancestors. Our new conception helps to explain and predict the origin of particular feeding styles, such as baleen-assisted filter feeding in whales and raptorial 'pierce' feeding in pinnipeds, and informs the structure of present and past ecosystems.


Assuntos
Evolução Biológica , Caniformia/fisiologia , Comportamento Alimentar , Baleias/fisiologia , Animais , Ecossistema , Comportamento Predatório
7.
Biol Lett ; 13(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28855416

RESUMO

The origin of baleen whales (Mysticeti), the largest animals on Earth, is closely tied to their signature filter-feeding strategy. Unlike their modern relatives, archaic whales possessed a well-developed, heterodont adult dentition. How these teeth were used, and what role their function and subsequent loss played in the emergence of filter feeding, is an enduring mystery. In particular, it has been suggested that elaborate tooth crowns may have enabled stem mysticetes to filter with their postcanine teeth in a manner analogous to living crabeater and leopard seals, thereby facilitating the transition to baleen-assisted filtering. Here we show that the teeth of archaic mysticetes are as sharp as those of terrestrial carnivorans, raptorial pinnipeds and archaeocetes, and thus were capable of capturing and processing prey. By contrast, the postcanine teeth of leopard and crabeater seals are markedly blunter, and clearly unsuited to raptorial feeding. Our results suggest that mysticetes never passed through a tooth-based filtration phase, and that the use of teeth and baleen in early whales was not functionally connected. Continued selection for tooth sharpness in archaic mysticetes is best explained by a feeding strategy that included both biting and suction, similar to that of most living pinnipeds and, probably, early toothed whales (Odontoceti).


Assuntos
Dente , Animais , Evolução Biológica , Baleias
9.
Biol Lett ; 12(4)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27072406

RESUMO

The evolution of biosonar (production of high-frequency sound and reception of its echo) was a key innovation of toothed whales and dolphins (Odontoceti) that facilitated phylogenetic diversification and rise to ecological predominance. Yet exactly when high-frequency hearing first evolved in odontocete history remains a fundamental question in cetacean biology. Here, we show that archaic odontocetes had a cochlea specialized for sensing high-frequency sound, as exemplified by an Oligocene xenorophid, one of the earliest diverging stem groups. This specialization is not as extreme as that seen in the crown clade. Paired with anatomical correlates for high-frequency signal production in Xenorophidae, this is strong evidence that the most archaic toothed whales possessed a functional biosonar system, and that this signature adaptation of odontocetes was acquired at or soon after their origin.


Assuntos
Cetáceos/fisiologia , Ecolocação , Fósseis , Audição , Animais , Evolução Biológica , Cetáceos/anatomia & histologia , Orelha Interna/fisiologia , Orelha Interna/ultraestrutura , Ondas Ultrassônicas
10.
Proc Natl Acad Sci U S A ; 109(11): 4187-90, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22308461

RESUMO

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Mamíferos/genética , Animais , Peso Corporal , Camundongos , Característica Quantitativa Herdável , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA