Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(15): 10772-10776, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37477980

RESUMO

Methods for selective deuterium incorporation into drug-like molecules have become extremely valuable due to the commercial, mechanistic, and biological importance of deuterated compounds. Herein, we report a programmable labeling platform that allows access to C2, C3, or C2- and C3-deuterated indoles under mild, user-friendly conditions. The C2-deuterated indoles are accessed using a reverse hydrogen isotope exchange strategy which represents the first non-directed C2-deuteration of indoles.

2.
Chemistry ; 27(33): 8411-8436, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33559933

RESUMO

The use of directing groups allows high levels of selectivity to be achieved in transition metal-catalyzed transformations. Efficient removal of these auxiliaries after successful functionalization, however, can be very challenging. This review provides a critical overview of strategies used for removal of Daugulis' 8-aminoquinoline (2005-2020), one of the most widely used N,N-bidentate directing groups. The limitations of these strategies are discussed and alternative approaches are suggested for challenging substrates. Our aim is to provide a comprehensive end-users' guide for chemists in academia and industry who want to harness the synthetic power of directing groups-and be able to remove them from their final products.

3.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798320

RESUMO

A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from female mice at four times-of-day (Zeitgeber Times 1, 7, 13, 19). Significantly, while both muscles demonstrated circadian-related changes in gene expression, intrinsic contractile function, endurance, and contraction-stimulated glucose uptake were not different between the four time points. Overall, these results demonstrate that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake. Impact statement: Ex vivo testing demonstrates that there is no time-of-day variation in the intrinsic contractile properties of skeletal muscle (including no effect on force production or endurance) or contraction-stimulated glucose uptake.

4.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463996

RESUMO

Mice with skeletal muscle-specific inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and thus could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared to wildtype (WT; i.e. Cre negative) littermates. Despite the profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca 2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca 2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice. New & Noteworthy: The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both p300 and CBP in skeletal muscle remains unknown. Here we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca 2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca 2+ and bypasses membrane depolarization.

5.
J Appl Physiol (1985) ; 136(6): 1559-1567, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722753

RESUMO

Mice with skeletal muscle-specific and inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle and ultimately die within 7 days. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and, thus, whether they could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle from adult i-mPCKO mice, there was ∼90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ∼65% reduction in in vivo ankle dorsiflexion torque, as compared with wild type (WT; i.e., Cre negative) littermates. Despite this profound loss of contractile force in i-mPCKO mice, there were no genotype-driven differences in fatigability during repeated contractions, nor were there genotype differences in mitochondrial-specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume, or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor actomyosin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.NEW & NOTEWORTHY The mechanism underlying dramatic loss of muscle contractile function with inducible deletion of both E1A binding protein p300 (p300) and cAMP-response element-binding protein binding protein (CBP) in skeletal muscle remains unknown. Here, we find that impairments in mitochondrial function or cross-bridge cycling are not the underlying mechanism of action. Future work will investigate other aspects of excitation-contraction coupling, such as Ca2+ handling and membrane excitability, as contractile function could be rescued by permeabilizing skeletal muscle, which provides exogenous Ca2+ and bypasses membrane depolarization.


Assuntos
Camundongos Knockout , Contração Muscular , Músculo Esquelético , Animais , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Proteína p300 Associada a E1A/metabolismo , Proteína de Ligação a CREB/metabolismo , Masculino , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Acetilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA