Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806719

RESUMO

The development of inhaled drugs for respiratory diseases is frequently impacted by lung pathology in non-clinical safety studies. To enable design of novel candidate drugs with the right safety profile, predictive in vitro lung toxicity assays are required that can be applied during drug discovery for early hazard identification and mitigation. Here, we describe a novel high-content imaging-based screening assay that allows for quantification of the tight junction protein occludin in A549 cells, as a model for lung epithelial barrier integrity. We assessed a set of compounds with a known lung safety profile, defined by clinical safety or non-clinical in vivo toxicology data, and were able to correctly identify 9 of 10 compounds with a respiratory safety risk and 9 of 9 compounds without a respiratory safety risk (90% sensitivity, 100% specificity). The assay was sensitive at relevant compound concentrations to influence medicinal chemistry optimization programs and, with an accessible cell model in a 96-well plate format, short protocol and application of automated imaging analysis algorithms, this assay can be readily integrated in routine discovery safety screening to identify and mitigate respiratory toxicity early during drug discovery. Interestingly, when we applied physiologically-based pharmacokinetic (PBPK) modelling to predict epithelial lining fluid exposures of the respiratory tract after inhalation, we found a robust correlation between in vitro occludin assay data and lung pathology in vivo, suggesting the assay can inform translational risk assessment for inhaled small molecules.

2.
Arch Toxicol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755480

RESUMO

The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis. MAT2A and its liver- and pancreas-specific isoform, MAT1A, generate the universal methyl donor S-adenosylmethionine (SAM) from ATP and methionine. Given the pleiotropic role SAM plays in methylation of diverse substrates, characterising the extent of SAM depletion and downstream perturbations following MAT2A/MAT1A inhibition (MATi) is critical for safety assessment. We have assessed in vivo target engagement and the resultant systemic phenotype using multi-omic tools to characterise response to a MAT2A inhibitor (AZ'9567). We observed significant SAM depletion and extensive methionine accumulation in the plasma, liver, brain and heart of treated rats, providing the first assessment of both global SAM depletion and evidence of hepatic MAT1A target engagement. An integrative analysis of multi-omic data from liver tissue identified broad perturbations in pathways covering one-carbon metabolism, trans-sulfuration and lipid metabolism. We infer that these pathway-wide perturbations represent adaptive responses to SAM depletion and confer a risk of oxidative stress, hepatic steatosis and an associated disturbance in plasma and cellular lipid homeostasis. The alterations also explain the dramatic increase in plasma and tissue methionine, which could be used as a safety and PD biomarker going forward to the clinic.

3.
Arch Biochem Biophys ; 735: 109518, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639008

RESUMO

The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are non-heme iron enzymes that catalyze key physiological reactions. This review discusses the present understanding of the common catalytic mechanism of these enzymes and recent advances in understanding the relationship between their structures and their regulation.


Assuntos
Oxigenases de Função Mista , Fenilalanina Hidroxilase , Oxigenases de Função Mista/química , Triptofano Hidroxilase/química , Triptofano Hidroxilase/metabolismo , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/metabolismo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Aminoácidos Aromáticos , Catálise
4.
Arch Biochem Biophys ; 729: 109378, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35995215

RESUMO

Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.


Assuntos
Metaloproteínas , Fenilalanina Hidroxilase , Biopterinas/análogos & derivados , Chromobacterium , Compostos Ferrosos , Ferro/metabolismo , Cinética , Metaloproteínas/metabolismo , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Pterinas/química , Pterinas/metabolismo , Termodinâmica , Tirosina
5.
Arch Toxicol ; 96(2): 613-624, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973110

RESUMO

The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes.


Assuntos
Fagocitose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , c-Mer Tirosina Quinase/antagonistas & inibidores , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Multimodal , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Long-Evans , Ratos Wistar , Degeneração Retiniana/induzido quimicamente , Epitélio Pigmentado da Retina/metabolismo , Distribuição Tecidual , c-Mer Tirosina Quinase/genética
6.
Cell Commun Signal ; 19(1): 66, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090457

RESUMO

BACKGROUND: Breast cancer is a common malignancy with varying clinical behaviors and for the more aggressive subtypes, novel and more efficient therapeutic approaches are needed. Qualities of the tumor microenvironment as well as cancer cell secretion have independently been associated with malignant clinical behaviors and a better understanding of the interplay between these two features could potentially reveal novel targetable key events linked to cancer progression. METHODS: A newly developed human derived in vivo-like growth system, consisting of decellularized patient-derived scaffolds (PDSs) recellularized with standardized breast cancer cell lines (MCF7 and MDA-MB-231), were used to analyze how 63 individual patient specific microenvironments influenced secretion determined by proximity extension assays including 184 proteins and how these relate to clinical outcome. RESULTS: The secretome from cancer cells in PDS cultures varied distinctly from cells grown as standard monolayers and besides a general increase in secretion from PDS cultures, several secreted proteins were only detectable in PDSs. Monolayer cells treated with conditioned media from PDS cultures, further showed increased mammosphere formation demonstrating a cancer stem cell activating function of the PDS culture induced secretion. The detailed secretomic profiles from MCF7s growing on 57 individual PDSs differed markedly but unsupervised clustering generated three separate groups having similar secretion profiles that significantly correlated to different clinical behaviors. The secretomic profile that associated with cancer relapse and high grade breast cancer showed induced secretion of the proteins IL-6, CCL2 and PAI-1, all linked to cancer stem cell activation, metastasis and priming of the pre-metastatic niche. Cancer promoting pathways such as "Suppress tumor immunity" and "Vascular and tissue remodeling" was also linked to this more malignant secretion cluster. CONCLUSION: PDSs repopulated with cancer cells can be used to assess how cancer secretion is effected by specific and varying microenvironments. More malignant secretion patterns induced by specific patient based cancer microenvironments could further be identified pinpointing novel therapeutic opportunities targeting micro environmentally induced cancer progression via secretion of potent cytokines. Video abstract.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/metabolismo , Alicerces Teciduais/química , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
7.
J Biol Chem ; 294(12): 4359-4367, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30674554

RESUMO

The naturally occurring R68S substitution of phenylalanine hydroxylase (PheH) causes phenylketonuria (PKU). However, the molecular basis for how the R68S variant leads to PKU remains unclear. Kinetic characterization of R68S PheH establishes that the enzyme is fully active in the absence of allosteric binding of phenylalanine, in contrast to the WT enzyme. Analytical ultracentrifugation establishes that the isolated regulatory domain of R68S PheH is predominantly monomeric in the absence of phenylalanine and dimerizes in its presence, similar to the regulatory domain of the WT enzyme. Fluorescence and small-angle X-ray scattering analyses establish that the overall conformation of the resting form of R68S PheH is different from that of the WT enzyme. The data are consistent with the substitution disrupting the interface between the catalytic and regulatory domains of the enzyme, shifting the equilibrium between the resting and activated forms ∼200-fold, so that the resting form of R68S PheH is ∼70% in the activated conformation. However, R68S PheH loses activity 2 orders of magnitude more rapidly than the WT enzyme at 37 °C and is significantly more sensitive to proteolysis. We propose that, even though this substitution converts the enzyme to a constitutively active enzyme, it results in PKU because of the decrease in protein stability.


Assuntos
Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/metabolismo , Regulação Alostérica , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Cinética , Mutação , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Conformação Proteica , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Ultracentrifugação , Difração de Raios X
8.
J Oncol Pharm Pract ; 26(8): 2047-2051, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32356680

RESUMO

INTRODUCTION: Acute graft-versus-host disease (aGVHD) is a significant immune-mediated complication of allogeneic hematopoietic stem cell transplant (HSCT). Despite prophylactic immunosuppression, the incidence of grades II-IV aGVHD post-HSCT varies from 20 to 80%. Tumor necrosis factor (TNF) is an important cytokine involved in the pathogenesis of GVHD, and medications such as infliximab (Remicade®) have been utilized as second-line treatment options in patients with steroid-refractory GHVD. Infliximab-dyyb (Inflectra®) and infliximab-qbtx (Ixifi®) are biosimilars approved by the FDA for a variety of autoimmune disorders. This is the first case report documenting the utility of infliximab-dyyb and -qbtx for the management of steroid-refractory aGVHD. CASE REPORT: We report the post-transplant course of three patients treated with infliximab biosimilars as a part of therapy for management of steroid-refractory aGVHD. MANAGEMENT AND OUTCOME: Steroid-refractory aGVHD is associated with poor prognosis and its management, as highlighted in our three patient cases, and can be very diverse often requiring different therapeutic modalities which overlap in administration. DISCUSSION: In these patients with steroid-refractory aGVHD, we were able to show that infliximab biosimilars could be used in lieu of the reference infliximab product. Although we had important limitations, this case report supports the use of anti-TNF agents in highly mortal steroid-refractory acute GI GVHD and that replacement of infliximab with its biosimilars is feasible.


Assuntos
Medicamentos Biossimilares/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infliximab/uso terapêutico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Doença Aguda , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Biochemistry ; 58(21): 2534-2541, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31046245

RESUMO

The flavoprotein d-6-hydroxynicotine oxidase catalyzes an early step in the oxidation of ( R)-nicotine, the oxidation of a carbon-nitrogen bond in the pyrrolidine ring of ( R)-6-hydroxynicotine. The enzyme is a member of the vanillyl alcohol oxidase/ p-cresol methylhydroxylase family of flavoproteins. The effects of substrate modifications on the steady-state and rapid-reaction kinetic parameters are not consistent with the quinone-methide mechanism of p-cresol methylhydroxylase. There is no solvent isotope effect on the kcat/ Kamine value with either ( R)-6-hydroxynicotine or the slower substrate ( R)-6-hydroxynornicotine. The effect of pH on the rapid-reaction kinetic parameters establishes that only the neutral form of the substrate and the correctly protonated form of the enzyme bind. The active-site residues Lys348, Glu350, and Glu352 are all properly positioned for substrate binding. The K348M substitution has only a small effect on the kinetic parameters; the E350A and E350Q substitutions decrease the kcat/ Kamine value by ∼20- and ∼220-fold, respectively, and the E352Q substitution decreases this parameter ∼3800-fold. The kcat/ Kamine-pH profile is bell-shaped. The p Ka values in that profile are altered by replacement of ( R)-6-hydroxynicotine with ( R)-6-hydroxynornicotine as the substrate and by the substitutions for Glu350 and Glu352, although the profiles remain bell-shaped. The results are consistent with a network of hydrogen-bonded residues in the active site being involved in binding the neutral form of the amine substrate, followed by the transfer of a hydride from the amine to the flavin.


Assuntos
Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nicotina/análogos & derivados , Oxirredutases/química , Oxirredutases/metabolismo , Biocatálise , Domínio Catalítico , Escherichia coli/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Isótopos/metabolismo , Cinética , Micrococcaceae/metabolismo , Nicotina/química , Nicotina/metabolismo , Oxirredução , Plasmídeos/genética , Especificidade por Substrato
10.
Arch Biochem Biophys ; 676: 108136, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604072

RESUMO

The flavoprotein trimethylamine dehydrogenase is a member of a small class of flavoproteins that catalyze amine oxidation and transfer the electrons through an Fe/S center to an external oxidant. The mechanism of amine oxidation by this family of enzymes has not been established. Here, we describe the use of pH and kinetic isotope effects with the slow substrate dimethylamine to study the mechanism. The data are consistent with the neutral amine being the form of the substrate that binds productively at the pH optimum, since the pKa seen in the kcat/Kamine pH profile for a group that must be unprotonated matches the pKa of dimethylamine. The D(kcat/Kamine) value decreases to unity as the pH decreases. This suggests the presence of an alternative pathway at low pH, in which the protonated substrate binds and is then deprotonated by an active-site residue prior to oxidation. The kcat and Dkcat values both decrease to limiting values at low pH with similar pKa values. This is consistent with a step other than amine oxidation becoming rate-limiting for turnover.


Assuntos
Deutério/química , Dimetilaminas/química , Dimetilaminas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Biocatálise , Concentração de Íons de Hidrogênio , Cinética , Methylophilus methylotrophus/enzimologia , Ligação Proteica , Especificidade por Substrato
11.
Proc Natl Acad Sci U S A ; 113(51): 14727-14732, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930312

RESUMO

Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ∼3 s-1 Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ∼4.0 s-1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the ß-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.


Assuntos
Cristalografia por Raios X/métodos , Entamoeba histolytica/enzimologia , Proteínas de Protozoários/química , RNA Nucleotidiltransferases/química , RNA/química , Catálise , Cristalização , Hidrólise , Íntrons , Ferro/química , Cinética , Espectrometria de Massas , Mutação , Peptídeos/química , Precursores de RNA/química , Splicing de RNA , RNA Circular , Raios X , Zinco/química
12.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362371

RESUMO

Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (2-13). The structures of the isolated compounds were established from NMR spectroscopic and mass spectrometric analyses. Structures of compounds 5 and 10 were further confirmed by single crystal X-ray crystallographic analyses, which also established their absolute stereochemical configuration. The ethanolic crude extract of C. kirkii root bark gave 72% inhibition against the chloroquine-sensitive 3D7-strain malaria parasite Plasmodium falciparum at 0.01 µg/mL. The isolated metabolites dichamanetin, (E)-acetylmelodorinol, and cleistenolide showed IC50 = 9.3, 7.6 and 15.2 µM, respectively, against P. falciparum 3D7. Both the crude extract and the isolated compounds exhibited cytotoxicity against the triple-negative, aggressive breast cancer cell line, MDA-MB-231, with IC50 = 42.0 µg/mL (crude extract) and 9.6-30.7 µM (isolated compounds). Our findings demonstrate the potential applicability of C. kirkii as a source of antimalarial and anticancer agents.


Assuntos
Annonaceae/química , Antimaláricos/química , Antimaláricos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacologia , Annonaceae/metabolismo , Humanos , Malária/tratamento farmacológico , Conformação Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Análise Espectral
13.
Biochemistry ; 57(44): 6274-6277, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346142

RESUMO

Liver phenylalanine hydroxylase (PheH) is an allosteric enzyme that is activated by phenylalanine. The enzyme is also phosphorylated by protein kinase A, but the effects of phosphorylation are unclear. Recent structural studies ( Meisburger et al. ( 2016 ) J. Amer. Chem. Soc. 138 , 6506 - 6516 ) support a model in which activation of the enzyme involves dimerization of the regulatory domains, creating the allosteric site for phenylalanine at the dimer interface. This conformational change also results in a change in the fluorescence of the protein that can be used to monitor activation. The kinetics of activation of PheH are biphasic over a range of phenylalanine concentrations. These data are well-described by a model involving an initial equilibrium between the resting form and the activated conformation, with a value of the equilibrium constant for formation of the activated conformation, L, equal to 0.007, followed by binding of two molecules of phenylalanine. Phosphorylation increases L 10-fold by increasing the rate constant for conversion of the resting form to the activated form. The results provide functional support for the previous structural model, identify the specific effect of phosphorylation on the enzyme, and rationalize the lack of change in the protein structure upon phosphorylation.


Assuntos
Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Fenilalanina/metabolismo , Conformação Proteica , Regulação Alostérica , Sítio Alostérico , Humanos , Cinética , Modelos Moleculares , Fosforilação , Multimerização Proteica
14.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28536265

RESUMO

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Assuntos
Resistência a Medicamentos , Proteínas de Helminto/química , Oxamniquine , Schistosoma haematobium/enzimologia , Schistosoma japonicum/enzimologia , Sulfotransferases/química , Animais , Cristalografia por Raios X , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferases/genética
15.
J Am Chem Soc ; 140(15): 5185-5192, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29589922

RESUMO

Solution studies of the aromatic amino acid hydroxylases are consistent with the FeIVO intermediate not forming until both the amino acid and tetrahydropterin substrates have bound. Structural studies have shown that the positions of active-site loops differs significantly between the free enzyme and the enzyme-amino acid-tetrahydropterin complex. In tryptophan hydroxylase (TrpH) these mobile loops contain residues 124-134 and 365-371, with a key interaction involving Ile366. The I366N mutation in TrpH results in decreases of 1-2 orders of magnitude in the kcat and kcat/ Km values. Single turnover analyses establish that the limiting rate constant for turnover is product release for the wild-type enzyme but is formation of the first detectable intermediate I in catalysis in the mutant enzyme. The mutation does not alter the kinetics of NO binding to the ternary complex nor does it uncouple FeIVO formation from amino acid hydroxylation. The effects on the kcat value of wild-type TrpH of changing viscosity are consistent with rate-limiting product release. While the effect of viscosity on the kcat/ KO2 value is small, consistent with reversible oxygen binding, the effects on the kcat/ Km values for tryptophan and the tetrahydropterin are large, with the latter value exceeding the expected limit and varying with the identity of the viscogen. In contrast, the kinetic parameters of I366N TrpH show small changes with viscosity. The results are consistent with binding of the amino acid and pterin substrate to form the ternary complex being directly coupled to closure of loops over the active site and formation of the reactive complex. The mutation destabilizes this initial event.

16.
Lab Invest ; 98(7): 957-967, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29588491

RESUMO

FUS-DDIT3 belongs to the FET (FUS, EWSR1, and TAF15) family of fusion oncogenes, which collectively are considered to be key players in tumor development. Even though over 90% of all myxoid liposarcomas (MLS) have a FUS-DDIT3 gene fusion, there is limited understanding of the signaling pathways that regulate its expression. In order to study cell proliferation and FUS-DDIT3 regulation at mRNA and protein levels, we first developed a direct cell lysis approach that allows DNA, mRNA, and protein to be analyzed in the same sample using quantitative PCR, reverse transcription quantitative qPCR and proximity ligation assay, respectively. We screened 70 well-characterized kinase inhibitors and determined their effects on cell proliferation and expression of FUS-DDIT3 and FUS at both mRNA and protein levels in the MLS 402-91 cell line, where twelve selected inhibitors were evaluated further in two additional MLS cell lines. Both FUS-DDIT3 and FUS mRNA expression correlated with cell proliferation and both transcripts were co-regulated in most conditions, indicating that the common 5' FUS promotor is important in transcriptional regulation. In contrast, FUS-DDIT3 and FUS protein levels displayed more cell line dependent expression. Furthermore, most JAK inhibitors caused FUS-DDIT3 downregulation at both mRNA and protein levels. In conclusion, defining factors that regulate FUS-DDIT3 expression opens new means to understand MLS development at the molecular level.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lipossarcoma Mixoide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , DNA/análise , DNA/genética , DNA/metabolismo , Humanos , Lipossarcoma Mixoide/genética , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Breast Cancer Res ; 20(1): 137, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30454027

RESUMO

BACKGROUND: Cancer progression is influenced by genetic aberrations in the cancer cell population as well as by other factors including the microenvironment present within a tumour. Direct interactions between various cell types as well as cellular signalling via secreted cytokines can drive key tumourigenic properties associated with disease progression and treatment resistance. Also, cancer stem cell functions are influenced by the microenvironment. This challenging subset of cells has been linked to malignant properties. Within a screen, using in vivo like growth conditions, we identified progranulin as a highly secreted cytokine affecting cancer stem cells in breast cancer. This cytokine is known to play a role in numerous biological and tumour-related processes including therapy resistance in a range of cancer types. METHODS: Different in vitro and in vivo relevant conditions were used to validate breast cancer stem cell expansion mediated by progranulin and its receptor sortilin. Small interfering ribonucleic acid (siRNA) and pharmacological inhibition of sortilin were used to elucidate the role of sortilin as a functional receptor during progranulin-induced breast cancer stem cell propagation, both in vitro and in vivo, using breast cancer xenograft models. In addition, single-cell gene expression profiling as well as a Sox2 reporter breast cancer cell line were used to validate the role of dedifferentiation mediated by progranulin. RESULTS: In various in vivo-like screening assays, progranulin was identified as a potent cancer stem cell activator, highly secreted in ERα-negative breast cancer as well as in ERα-positive breast cancer under hypoxic adaptation. Progranulin exposure caused dedifferentiation as well as increased proliferation of the cancer stem cell pool, a process that was shown to be dependent on its receptor sortilin. Subcutaneous injections of progranulin or its active domain (GRN A) induced lung metastases in breast cancer xenograft models, supporting a major role for progranulin in cancer progression. Importantly, an orally bioavailable small molecule (AF38469) targeting sortilin, blocked GRN A-induced lung metastases and prevented cancer cell infiltration of the skin. CONCLUSION: The collective results suggest that sortilin targeting represents a potential novel breast cancer therapy approach inhibiting tumour progression driven by secretion and microenvironmental influences.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Progranulinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Progressão da Doença , Receptor alfa de Estrogênio/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Hidrocarbonetos Fluorados/farmacologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Progranulinas/administração & dosagem , Piridinas/farmacologia , RNA Interferente Pequeno/metabolismo , Análise de Célula Única , Técnicas de Cultura de Tecidos , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nat Chem Biol ; 12(11): 908-910, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27669419

RESUMO

We describe a two-dimensional thermal proteome profiling strategy that can be combined with an orthogonal chemoproteomics approach to enable comprehensive target profiling of the marketed histone deacetylase inhibitor panobinostat. The N-hydroxycinnamide moiety is identified as critical for potent and tetrahydrobiopterin-competitive inhibition of phenylalanine hydroxylase leading to increases in phenylalanine and decreases in tyrosine levels. These findings provide a rationale for adverse clinical observations and suggest repurposing of the drug for treatment of tyrosinemia.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Fenilalanina Hidroxilase/antagonistas & inibidores , Temperatura , Relação Dose-Resposta a Droga , Células Hep G2 , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Indóis/química , Estrutura Molecular , Panobinostat , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/metabolismo , Relação Estrutura-Atividade
19.
Beilstein J Org Chem ; 14: 2295-2307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202483

RESUMO

Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.

20.
Biochemistry ; 56(6): 869-875, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28080034

RESUMO

The flavoenzyme l-6-hydroxynicotine oxidase is a member of the monoamine oxidase family that catalyzes the oxidation of (S)-6-hydroxynicotine to 6-hydroxypseudooxynicotine during microbial catabolism of nicotine. While the enzyme has long been understood to catalyze oxidation of the carbon-carbon bond, it has recently been shown to catalyze oxidation of a carbon-nitrogen bond [Fitzpatrick, P. F., et al. (2016) Biochemistry 55, 697-703]. The effects of pH and mutagenesis of active site residues have now been utilized to study the mechanism and roles of active site residues. Asn166 and Tyr311 bind the substrate, while Lys287 forms a water-mediated hydrogen bond with flavin N5. The N166A and Y311F mutations result in ∼30- and ∼4-fold decreases in kcat/Km and kred for (S)-6-hydroxynicotine, respectively, with larger effects on the kcat/Km value for (S)-6-hydroxynornicotine. The K287M mutation results in ∼10-fold decreases in these parameters and a 6000-fold decrease in the kcat/Km value for oxygen. The shapes of the pH profiles are not altered by the N166A and Y311F mutations. There is no solvent isotope effect on the kcat/Km value for amines. The results are consistent with a model in which both the charged and neutral forms of the amine can bind, with the former rapidly losing a proton to a hydrogen bond network of water and amino acids in the active site prior to the transfer of hydride to the flavin.


Assuntos
Arthrobacter/enzimologia , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Modelos Moleculares , Nicotina/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/química , Flavoproteínas/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrólise , Lisina/química , Mutagênese Sítio-Dirigida , Mutação , Nicotina/química , Nicotina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solventes/química , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA