Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
SLAS Discov ; 27(8): 460-470, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156314

RESUMO

Recent efforts for increasing the success in drug discovery focus on an early, massive, and routine mechanistic and/or kinetic characterization of drug-target engagement as part of a design-make-test-analyze strategy. From an experimental perspective, many mechanistic assays can be translated into a scalable format on automation platforms and thereby enable routine characterization of hundreds or thousands of compounds. However, now the limiting factor to achieve such in-depth characterization at high-throughput becomes the quality-driven data analysis, the sheer scale of which outweighs the time available to the scientific staff of most labs. Therefore, automated analytical workflows are needed to enable such experimental scale-up. We have implemented such a fully automated workflow in Genedata Screener for time-dependent ligand-target binding analysis to characterize non-equilibrium inhibitors. The workflow automates Quality Control (QC) / data modelling and decision-making process in a staged analysis: (1) quality control of raw input data-fluorescence signal-based progress curves - featuring automated rejection of unsuitable measurements; (2) automated model selection - one-step versus two-step binding model - using statistical methods and biological validity rules; (3) result visualization in specific plots and annotated result tables, enabling the scientist to review large result sets efficiently and, at the same time, to rapidly identify and focus on interesting or unusual results; (4) an interactive user interface for immediate adjustment of automated decisions, where necessary. Applying this workflow to first-pass, high-throughput kinetic studies on kinase projects has allowed us to surmount previously rate-limiting manual analysis steps and boost productivity; and is now routinely embedded in a biopharma discovery research process.


Assuntos
Análise de Dados , Descoberta de Drogas , Humanos , Cinética
2.
Curr Biol ; 31(4): 733-741.e7, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33275889

RESUMO

Orientation preference maps (OPMs) are a prominent feature of primary visual cortex (V1) organization in many primates and carnivores. In rodents, neurons are not organized in OPMs but are instead interspersed in a "salt and pepper" fashion, although clusters of orientation-selective neurons have been reported. Does this fundamental difference reflect the existence of a lower size limit for orientation columns (OCs) below which they cannot be scaled down with decreasing V1 size? To address this question, we examined V1 of one of the smallest living primates, the 60-g prosimian mouse lemur (Microcebus murinus). Using chronic intrinsic signal imaging, we found that mouse lemur V1 contains robust OCs, which are arranged in a pinwheel-like fashion. OC size in mouse lemurs was found to be only marginally smaller compared to the macaque, suggesting that these circuit elements are nearly incompressible. The spatial arrangement of pinwheels is well described by a common mathematical design of primate V1 circuit organization. In order to accommodate OPMs, we found that the mouse lemur V1 covers one-fifth of the cortical surface, which is one of the largest V1-to-cortex ratios found in primates. These results indicate that the primate-type visual cortical circuit organization is constrained by a size limitation and raises the possibility that its emergence might have evolved by disruptive innovation rather than gradual change.


Assuntos
Cheirogaleidae , Córtex Visual Primário/anatomia & histologia , Córtex Visual Primário/fisiologia , Animais , Cheirogaleidae/anatomia & histologia , Cheirogaleidae/fisiologia , Feminino , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Orientação , Córtex Visual Primário/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA