Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Undersea Hyperb Med ; 49(2): 197-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580487

RESUMO

Purpose: Diving in warm water increases thermal risk during exercise compared to thermoneutral waters. The purpose of this study was to evaluate exercise endurance in warm- and hot-water conditions in divers habituated to wet or dry heat. Methods: Nineteen male divers completed this study at the Navy Experimental Diving Unit. Subjects were assigned DRY or WET heat habituation groups. The DRY group (n=9) cycled at 125-150W for one hour in a non-immersed condition (34.4˚C, 50%RH), while the WET group (n=10) cycled at 50W for one hour while immersed in 34.4˚C water. Exercise time to exhaustion was tested on an underwater cycle ergometer in 35.8˚C (WARM) and 37.2˚C (HOT) water at 50W. Core temperature (Tc) was continuously recorded and for all dives. Results: Time to exhaustion was reduced in HOT compared to WARM water (p ≺0.01) in both DRY (92.7 ± 41.6 minutes in 35.8°C vs. 43.4 ± 17.5 minutes in 37.2°C) and WET (95.9 ± 39.2 minutes in 35.8°C vs. 53.4 ± 27.5 minutes in 37.2°C) groups, but did not differ between groups (p=0.62). Rate of Tc rise was greater with higher water temperature (p ≺0.01), but was not different between groups (p=0.68). Maximum Tc (p=0.94 and p=0.95) and Tc change from baseline (p=0.38 and p=0.34) was not different between water temperatures or habituation group, respectively. Conclusion: Endurance decreased with increased water temperature but was not different between WET and DRY. Divers became exhausted at a similar core temperature during WARM- and HOT-water exercise. Mechanisms and applications of heat acclimation for warm-water diving should be further explored.


Assuntos
Mergulho , Imersão , Temperatura Corporal , Mergulho/efeitos adversos , Exercício Físico , Temperatura Alta , Humanos , Masculino , Água
2.
Undersea Hyperb Med ; 47(2): 261-265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574443

RESUMO

Hyperoxic myopia is a phenomenon reported in individuals who have prolonged exposure to an increased partial pressure of oxygen (PO2) and subsequently have a myopic (nearsighted) change in their vision. To date, there are numerous accounts of hyperoxic myopia in dry hyperbaric oxygen treatment patients; however, there have been only three confirmed cases reported in wet divers. This case series adds four confirmed cases of hyperoxic myopia in wet divers using 1.35 atmospheres (ATM) PO2 at the Navy Experimental Diving Unit (NEDU). The four divers involved were the first author's patients at NEDU. Conditions for two divers were confirmed via record review, whereas the other two divers were diagnosed by the first author. All subjects were interviewed to correlate subjective data with objective findings. Each subject completed five consecutive six-hour hyperoxic (PO2 of 1.35 ATM) dives with 18-hour surface intervals. Each individual was within the U. S. Navy Dive Manual's standards for general health. Visual acuity was measured prior to diving. Within three to four days after diving, the individuals reported blurry vision with an associated myopic refraction shift. Each diver had spontaneous resolution of his myopia over the next two to three weeks, with no significant residual symptoms. The divers in this case series were exposed to an increased PO2 (1.35 ATM for 30 hours over five days), a lesser exposure than that in other reports of hyperoxic myopia in wet divers diagnosed with hyperoxic myopia (1.3-1.6 ATM for 45-85 hours in 12-18 days). Furthermore, this pulse of exposure was more concentrated than typically seen with traditional hyperbaric oxygen therapy. Hyperoxic myopia continues to be a risk for those conducting intensive diving with a PO2 between 1.3-1.6 ATM. Additional investigation is warranted to better define risk factors and PO2 limits regarding ocular oxygen toxicity.


Assuntos
Mergulho/efeitos adversos , Hiperóxia/complicações , Miopia/etiologia , Adulto , Humanos , Miopia/diagnóstico , Oxigênio/efeitos adversos , Pressão Parcial , Fatores de Tempo , Acuidade Visual
3.
Eur J Appl Physiol ; 118(10): 2065-2076, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30003382

RESUMO

PURPOSE: The objective of this study was to examine the effects of repeated long-duration water immersions (WI)s at 1.35 atmospheres absolute (ATA) on neuromuscular performance in load bearing and non-load bearing muscle groups. METHODS: During a dive week (DW), fifteen well-trained male divers completed five consecutive 6-h resting dives with 18-h surface intervals while breathing compressed air at 1.35 ATA. Skeletal muscle performance assessments occurred immediately before and after each WI, and 24 and 72 h after the final WI. Exercise assessments included maximum voluntary isometric contraction (MVIC), maximal isokinetic (IK) contraction, maximum handgrip strength (MHG). Surface electromyography measured neuromuscular activation of the quadriceps, biceps brachii (BB), and brachioradialis. RESULTS: MVIC torque of knee extensors and BB decreased by 6% (p = 0.001) and 2% (p = 0.014), respectively, by WI 3. Maximal IK torque of knee extensors increased by 11 and 5% post-WI on WIs 3 and 5 (p < 0.001) with greater neuromuscular activation post-WI than pre-WI (p < 0.001). Maximum IK elbow flexion torque did not change throughout the DW with BB neuromuscular activation greater post-WI than pre-WI (p < 0.001). MHG force output was 4% greater post-WI than pre-WI (p < 0.001) with increased brachioradialis activation through 72-h post-WI (p < 0.001). All muscle performance metrics returned baseline levels by 72-h post-WI. CONCLUSION: Our findings indicate that repeated WIs caused noticeable decrements in neuromuscular activation and performance of load bearing muscles on WI 3 while full recovery was observed by 72-h post-WI.


Assuntos
Mergulho/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Adulto , Braço/fisiologia , Cotovelo/fisiologia , Articulação do Cotovelo/fisiologia , Eletromiografia/métodos , Força da Mão/fisiologia , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Fadiga Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia , Fatores de Tempo , Torque , Água
4.
J Appl Biomech ; 34(6): 435-441, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29809074

RESUMO

Transitioning between different sensory environments is known to affect sensorimotor function and postural control. Water immersion presents a novel environmental stimulus common to many professional and recreational pursuits, but is not well-studied with regard to its sensorimotor effects upon transitioning back to land. The authors investigated the effects of long-duration water immersion on terrestrial postural control outcomes in veteran divers. Eleven healthy men completed a 6-hour thermoneutral pool dive (4.57 m) breathing diver air. Center of pressure was observed before and 15 minutes after the dive under 4 conditions: (1) eyes open/stable surface (Open-Stable); (2) eyes open/foam surface (Open-Foam); (3) eyes closed/stable surface (Closed-Stable); and (4) eyes closed/foam surface (Closed-Foam). Postdive decreases in postural sway were observed in all testing conditions except for Open-Stable. The specific pattern of center of pressure changes in the postdive window is consistent with (1) a stiffening/overregulation of the ankle strategy during Open-Foam, Closed-Stable, and Closed-Foam or (2) acute upweighting of vestibular input along with downweighting of somatosensory, proprioceptive, and visual inputs. Thus, our findings suggest that postimmersion decreases in postural sway may have been driven by changes in weighting of sensory inputs and associated changes in balance strategy following adaptation to the aquatic environment.

5.
Undersea Hyperb Med ; 44(6): 589-600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281196

RESUMO

BACKGROUND: The influence of prolonged and repeated water immersions on heart rate variability (HRV) and complexity was examined in 10 U.S. Navy divers who completed six-hour resting dives on five consecutive days. Pre-dive and during-dive measures were recorded daily. METHODS: Dependent variables of interest were average heart rate (HR), time-domain measures of HRV [root mean square of successive differences of the normal RR (NN) interval (RMSSD), standard deviation of the NN interval (SDNN)], frequency-domain measures of HRV [low-frequency power spectral density (psd) (LFpsd), low-frequency normalized (LFnu), high-frequency psd (HFpsd), high-frequency normalized (HFnu), low-frequency/ high-frequency ratio (LF/HF)], and non-linear dynamics of HRV [approximate entropy (ApEn)]. A repeated-measures ANOVA was performed to examine pre-dive measure differences among baseline measures. Hierarchical linear modeling (HLM) was performed to test the effects of prolonged and repeated water immersion on the dependent variables. RESULTS: Pre-dive HR (P=0.005) and RMSSD (P⟨0.001) varied significantly with dive day while changes in SDNN approached significance (P=0.055). HLM indicated that HR decreased during daily dives (P=0.001), but increased across dive days (P=0.011); RMSSD increased during daily dives (P=0.018) but decreased across dive days (P⟨0.001); SDNN increased during daily dives (P⟨0.001); LF measures increased across dive days (LFpsd P⟨0.001; LFnu P⟨0.001), while HF measures decreased across dive days (HFpsd P⟨0.001; HFnu P⟨0.001); LF/HF increased across dive days (P⟨0.001); ApEn decreased during daily dives (P⟨0.02) and across dive days (P⟨0.001). CONCLUSIONS: These data suggest that the cumulative effect of repeated dives across five days results in decreased vagal tone and a less responsive cardiovascular system.


Assuntos
Mergulho/efeitos adversos , Mergulho/fisiologia , Frequência Cardíaca/fisiologia , Imersão/efeitos adversos , Imersão/fisiopatologia , Militares , Adulto , Análise de Variância , Eletrocardiografia/estatística & dados numéricos , Humanos , Modelos Lineares , Masculino , Modelos Cardiovasculares , Monitorização Fisiológica/estatística & dados numéricos , Estresse Fisiológico , Estados Unidos , Adulto Jovem
6.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R582-91, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440716

RESUMO

Time-domain indices of electrodermal activity (EDA) have been used as a marker of sympathetic tone. However, they often show high variation between subjects and low consistency, which has precluded their general use as a marker of sympathetic tone. To examine whether power spectral density analysis of EDA can provide more consistent results, we recently performed a variety of sympathetic tone-evoking experiments (43). We found significant increase in the spectral power in the frequency range of 0.045 to 0.25 Hz when sympathetic tone-evoking stimuli were induced. The sympathetic tone assessed by the power spectral density of EDA was found to have lower variation and more sensitivity for certain, but not all, stimuli compared with the time-domain analysis of EDA. We surmise that this lack of sensitivity in certain sympathetic tone-inducing conditions with time-invariant spectral analysis of EDA may lie in its inability to characterize time-varying dynamics of the sympathetic tone. To overcome the disadvantages of time-domain and time-invariant power spectral indices of EDA, we developed a highly sensitive index of sympathetic tone, based on time-frequency analysis of EDA signals. Its efficacy was tested using experiments designed to elicit sympathetic dynamics. Twelve subjects underwent four tests known to elicit sympathetic tone arousal: cold pressor, tilt table, stand test, and the Stroop task. We hypothesize that a more sensitive measure of sympathetic control can be developed using time-varying spectral analysis. Variable frequency complex demodulation, a recently developed technique for time-frequency analysis, was used to obtain spectral amplitudes associated with EDA. We found that the time-varying spectral frequency band 0.08-0.24 Hz was most responsive to stimulation. Spectral power for frequencies higher than 0.24 Hz were determined to be not related to the sympathetic dynamics because they comprised less than 5% of the total power. The mean value of time-varying spectral amplitudes in the frequency band 0.08-0.24 Hz were used as the index of sympathetic tone, termed TVSymp. TVSymp was found to be overall the most sensitive to the stimuli, as evidenced by a low coefficient of variation (0.54), and higher consistency (intra-class correlation, 0.96) and sensitivity (Youden's index > 0.75), area under the receiver operating characteristic (ROC) curve (>0.8, accuracy > 0.88) compared with time-domain and time-invariant spectral indices, including heart rate variability.


Assuntos
Nível de Alerta/fisiologia , Resposta Galvânica da Pele/fisiologia , Pele/inervação , Estresse Fisiológico/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Técnicas de Diagnóstico Neurológico , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Undersea Hyperb Med ; 42(3): 249-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26152106

RESUMO

Research documenting changes in cortisol concentration following hyperbaric exposures has been contradictory, possibly due to the inclusion of many confounding factors. Therefore, the aim of this study was to document short- and long-term cortisol responses following repeated water immersions arid/or exposure to raised partial pressure of oxygen under controlled conditions. Thirty-two Navy divers (31 ± 7 [19-44] years; mean ± SD) were exposed to one of three resting thermoneutral experimental conditions at a pressure of 1.35 atmospheres absolute (atm abs) for six hours on five consecutive days: (1) breathing air while immersed (air; n = 10); (2) breathing 100% oxygen in a hyperbaric chamber (dry; n = 12); or (3) breathing 100% oxygen while immersed (oxygen; n = 10). Divers were at rest for all conditions. Serum cortisol concentrations were measured one hour before and after each dive. The change in cortisol (ug/dL) after diving was similar for air (3.63 ± 5.56), dry (4.91 ± 3.68) and oxygen (3.50 ± 3.48) phases (p > 0.05). There were no differences in preor post-dive cortisol concentrations across dive days for any of the experimental conditions. This study provides evidence that repeated long-duration, thermoneutral immersions and/or hyperbaric oxygen exposures at 1.35 atm abs, under ideal conditions per se do not abnormally alter cortisol concentrations. Observed changes are likely the result of the natural circadian rhythm of cortisol.


Assuntos
Mergulho/fisiologia , Hidrocortisona/sangue , Oxigenoterapia Hiperbárica , Imersão , Temperatura , Adulto , Ar , Análise de Variância , Pressão Atmosférica , Biomarcadores/sangue , Ritmo Circadiano , Humanos , Masculino , Oxigênio , Pressão Parcial , Fatores de Tempo , Água
8.
Phys Rev Lett ; 113(13): 130401, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302871

RESUMO

We investigate the phenomenon of anonymous quantum nonlocality, which refers to the existence of multipartite quantum correlations that are not local in the sense of being Bell-inequality-violating but where the nonlocality is--due to its biseparability with respect to all bipartitions--seemingly nowhere to be found. Such correlations can be produced by the nonlocal collaboration involving definite subset(s) of parties but to an outsider, the identity of these nonlocally correlated parties is completely anonymous. For all n≥3, we present an example of an n-partite quantum correlation exhibiting anonymous nonlocality derived from the n-partite Greenberger-Horne-Zeilinger state. An explicit biseparable decomposition of these correlations is provided for any partitioning of the n parties into two groups. Two applications of these anonymous Greenberger-Horne-Zeilinger correlations in the device-independent setting are discussed: multipartite secret sharing between any two groups of parties and bipartite quantum key distribution that is robust against nearly arbitrary leakage of information.

9.
Med Sci Sports Exerc ; 56(2): 257-265, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793156

RESUMO

INTRODUCTION: Long-duration dives on consecutive days reduces muscular performance, potentially affecting military personnel. However, a paucity of data exists on how breathing gases affect endurance performance. This study examined the influence of long-duration diving with different breathing gases on aerobic endurance and handgrip performance. METHODS: Twenty-three military divers completed a single 6-h dive (single dive [SD]) and five 6-h dives over consecutive days (dive week [DW]) with 30-min cycling intervals using air (AIR, n = 13) or 100% oxygen (OXY, n = 10). Before and after SD and DW, subjects completed a maximum handgrip strength test, a handgrip endurance test at 40% maximal strength, and a time to exhaustion run. RESULTS: Handgrip endurance decreased after DW in OXY (SD, 1.9 ± 0.0 vs 1.4 ± 0.3 min) compared with AIR (1.8 ± 0.0 vs 1.8 ± 0.2 min) ( P < 0.001). Run time decreased after SD (Pre, 20.7 ± 10.4 min; Post, 16.6 ± 7.6 min; P = 0.039) and DW (Pre, 21.6 ± 9.0 min; Post, 11.2 ± 4.0 min; P < 0.001) in OXY and after overall diving in AIR (Pre, 26.5 ± 10.2 min; Post, 22.3 ± 7.5 min; P = 0.025). V̇O 2 decreased after diving only in AIR (Pre, 42.6 ± 3.4 mL·kg -1 ⋅min -1 ; Post, 40.4 ± 3.7 mL·kg -1 ⋅min -1 ; P = 0.010). There were no other significant effects. CONCLUSIONS: Breathing 100% oxygen during long-duration dives on consecutive days may exacerbate decreases in aerobic endurance and impairs handgrip endurance compared with air. Additional research is needed to elucidate mechanisms of action and possible mitigation strategies.


Assuntos
Mergulho , Força da Mão , Humanos , Oxigênio , Respiração , Terapia por Exercício
10.
Mil Med ; 188(9-10): 3071-3078, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35822881

RESUMO

INTRODUCTION: It is unclear whether immersion heat acclimation benefits exercise in warm water conditions. This study examined the effects of heat acclimation strategies on heart rate (HR), core temperature, and time to exhaustion (TTE) during cycling exercise in varying warm water conditions. METHODS: Twenty male divers completed this study at the Navy Experimental Diving Unit. Subjects were randomly assigned to one of two 9-day heat acclimation groups. The first group (WARM; n = 10) cycled for 2 hours at 50 W in 34.4 °C water, while the second group (HOT; n = 10) cycled for 1 hour against minimal resistance in 36.7 °C water. Following acclimation, TTE was tested by underwater cycling (30 W) in 35.8 °C, 37.2 °C, and 38.6 °C water. RESULTS: Throughout acclimation, the rate of core temperature rise in the first 30 minutes of exercise increased (P = .02), but the maximum core temperature reached was not different for either group. Time to exhaustion (TTE) was reduced, and the rate of core temperature rise during performance testing increased (both P < .001) with increasing water temperature but was not different between groups. Core temperature and HR increased throughout performance testing in each water condition and were lower in the HOT compared to the WARM acclimation group (all P < .05) with the exception of core temperature in the 37.2 °C condition. CONCLUSIONS: Underwater exercise performance did not differ between the two acclimation strategies. This study suggests that passive acclimation to a higher water temperature may improve thermoregulatory and cardiovascular responses to exercise in warm water. Hot water immersion adaptations are dependent on exercise intensity and water temperature.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Humanos , Masculino , Regulação da Temperatura Corporal/fisiologia , Aclimatação/fisiologia , Exercício Físico/fisiologia , Adaptação Fisiológica , Temperatura Alta , Febre , Água , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia
11.
Anesth Analg ; 115(1): 74-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22543068

RESUMO

BACKGROUND: We designed this study to determine if 900 mL of blood withdrawal during spontaneous breathing in healthy volunteers could be detected by examining the time-varying spectral amplitude of the photoplethysmographic (PPG) waveform in the heart rate frequency band and/or in the breathing rate frequency band before significant changes occurred in heart rate or arterial blood pressure. We also identified the best PPG probe site for early detection of blood volume loss by testing ear, finger, and forehead sites. METHODS: Eight subjects had 900 mL of blood withdrawn followed by reinfusion of 900 mL of blood. Physiological monitoring included PPG waveforms from ear, finger, and forehead probe sites, standard electrocardiogram, and standard blood pressure cuff measurements. The time-varying amplitude sequences in the heart rate frequency band and breathing rate frequency band present in the PPG waveform were extracted from high-resolution time-frequency spectra. These amplitudes were used as a parameter for blood loss detection. RESULTS: Heart rate and arterial blood pressure did not significantly change during the protocol. Using time-frequency analysis of the PPG waveform from ear, finger, and forehead probe sites, the amplitude signal extracted at the frequency corresponding to the heart rate significantly decreased when 900 mL of blood was withdrawn, relative to baseline (all P < 0.05); for the ear, the corresponding signal decreased when only 300 mL of blood was withdrawn. The mean percent decrease in the amplitude of the heart rate component at 900 mL blood loss relative to baseline was 45.2% (38.2%), 42.0% (29.2%), and 42.3% (30.5%) for ear, finger, and forehead probe sites, respectively, with the lower 95% confidence limit shown in parentheses. After 900 mL blood reinfusion, the amplitude signal at the heart rate frequency showed a recovery towards baseline. There was a clear separation of amplitude values at the heart rate frequency between baseline and 900 mL blood withdrawal. Specificity and sensitivity were both found to be 87.5% with 95% confidence intervals (47.4%, 99.7%) for ear PPG signals for a chosen threshold value that was optimized to separate the 2 clusters of amplitude values (baseline and blood loss) at the heart rate frequency. Meanwhile, no significant changes in the spectral amplitude in the frequency band corresponding to respiration were found. CONCLUSION: A time-frequency spectral method detected blood loss in spontaneously breathing subjects before the onset of significant changes in heart rate or blood pressure. Spectral amplitudes at the heart rate frequency band were found to significantly decrease during blood loss in spontaneously breathing subjects, whereas those at the breathing rate frequency band did not significantly change. This technique may serve as a valuable tool in intraoperative and trauma settings to detect and monitor hemorrhage.


Assuntos
Determinação do Volume Sanguíneo/métodos , Volume Sanguíneo , Frequência Cardíaca , Hipovolemia/diagnóstico , Raios Infravermelhos , Fotopletismografia , Mecânica Respiratória , Processamento de Sinais Assistido por Computador , Adulto , Pressão Sanguínea , Determinação da Pressão Arterial , Transfusão de Sangue Autóloga , Análise por Conglomerados , Connecticut , Eletrocardiografia , Humanos , Hipovolemia/fisiopatologia , Masculino , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
12.
Exp Physiol ; 95(4): 486-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061355

RESUMO

Plasma non-esterified fatty acids (NEFAs) activate the sympathetic nervous system and increase vascular resistance and blood pressure (BP); however, the response with ageing is not known. The objectives of this study were to characterize the cardiovascular, neural and endocrine responses to acute elevation of NEFA concentration. Seventeen healthy older volunteers (7 male and 10 female; age, 69 +/- 1 years; body mass index, 24 +/- 0 kg m(2); values are means +/- s.e.m.) received a 4 h intravenous infusion of the lipid emulsion Intralipid 20% or placebo (single-blind, randomized, balanced order) on two different days separated by at least 2 weeks. Muscle sympathetic nerve activity (MSNA), heart rate (HR), BP, cardiac output, leptin, insulin, aldosterone, angiotensin II and F(2)-isoprostanes were measured. The change in HR (+8.8 +/- 0.9 versus +3.0 +/- 0.9 beats min(1)), systolic BP (+13.9 +/- 2.2 versus +6.6 +/- 2.4 mmHg) and diastolic BP (+7.4 +/- 1.5 versus +1.3 +/- 0.8 mmHg) was significantly greater after Intralipid versus placebo infusions (P < 0.001). Lipid infusion increased MSNA burst frequency (+6.7 +/- 1.6 bursts min(1)), total MSNA (+45%; P < 0.001) and concentrations of insulin (+40%), aldosterone (+50%) and F(2)-isoprostanes (+80%), but not leptin. Hyperlipidaemia caused directionally opposite responses for insulin (increased) and calf vascular resistance (decreased) in men, whereas insulin and calf vascular resistance responses were severely blunted and non-existent, respectively, in women. We conclude that direct vascular mechanisms and central sympathetic activation contribute to the NEFA pressor response; though absolute values are higher, the change is not different compared with previous studies in a younger population.


Assuntos
Envelhecimento/sangue , Emulsões Gordurosas Intravenosas/farmacologia , Ácidos Graxos não Esterificados/sangue , Hemodinâmica/fisiologia , Sistema Nervoso Simpático/fisiologia , Idoso , Aldosterona/sangue , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Débito Cardíaco/efeitos dos fármacos , Epinefrina/sangue , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Hiperlipidemias/fisiopatologia , Insulina/sangue , Perna (Membro)/irrigação sanguínea , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Fluxo Sanguíneo Regional , Resistência Vascular/efeitos dos fármacos
13.
Clin Sci (Lond) ; 118(1): 61-9, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19426144

RESUMO

Previous studies have shown that acute increases in plasma NEFAs (non-esterified fatty acids) raise SVR (systemic vascular resistance) and BP (blood pressure). However, these studies have failed to distinguish between CNS (central nervous system) mechanisms that raise sympathetic activity and paracrine mechanisms that increase SVR directly, independent of CNS involvement. The aim of the present study was to directly determine whether the sympathetic nervous system contributes to the pressor response to NEFAs. On 2 days separated by at least 2 weeks, 17 lean healthy volunteers (ten male/seven female; age, 22+/-1 years; body mass index, 23+/-1 kg/m2; values are means+/-S.E.M.) received a 4-h intravenous infusion of 20% Intralipid or placebo (in a single-blind randomized balanced order). MSNA (muscle sympathetic nerve activity), HR (heart rate), BP (oscillometric brachial measurement) and Q (cardiac output; acetylene rebreathing) were measured before and throughout infusion. The change in HR (+8.2+/-1.0 and +2.4+/-1.2 beats/min), systolic BP (+14.0+/-1.6 and +3.2+/-2.5 mmHg) and diastolic BP (+8.2+/-1.0 and -0.1+/-1.7 mmHg) were significantly greater after the 4-h infusion of Intralipid compared with placebo (P<0.001). The change in BP with Intralipid resulted from an increase in SVR (Q/mean arterial pressure; P<0.001) compared with baseline, without a change in Q. MSNA burst frequency increased during Intralipid infusion compared with baseline (+4.9+/-1.3 bursts/min; P<0.05), and total MSNA (frequencyxamplitude) was augmented 65% (P<0.001), with no change during placebo infusion. Lipid infusion increased insulin, aldosterone and F2-isoprostane, but not leptin, concentrations. On the basis of the concomitant increase in BP, MSNA and SVR, we conclude that central sympathetic activation contributes to the pressor response to NEFAs.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Emulsões Gordurosas Intravenosas/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Adolescente , Adulto , Aldosterona/sangue , Antropometria/métodos , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , F2-Isoprostanos/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Glicerol/sangue , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Humanos , Insulina/sangue , Leptina/sangue , Masculino , Distribuição Aleatória , Método Simples-Cego , Sistema Nervoso Simpático/fisiologia , Triglicerídeos/sangue , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Adulto Jovem
14.
Front Physiol ; 10: 960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417421

RESUMO

Purpose: The main objective of this study was to investigate the physiological effects of repetitive diving-induced hyperoxic conditions at 1.35 atmospheres absolute (ATA) on neuromuscular strength performance. We hypothesized that following five days of consecutive, resting, long-duration (6 h or more) hyperoxic water immersions (WIs) neuromuscular strength performance would be reduced with a longer recovery time in comparison to previously reported normoxic WIs. Methods: Thirteen (n = 13) active male divers [31.3 ± 1.7 (24-43) years, mean ± years] completed five consecutive days of 6-h resting WIs with 18-h surface intervals while breathing 100% O2 (n = 13) at 1.35 ATA. Skeletal muscle performance assessments occurred immediately before and after each WI and 24 and 72 h after the final WI. Performance assessments included maximum voluntary isometric contraction (MVIC) and maximal isokinetic (IK) knee extensions and elbow flexions, and isometric maximum handgrip (MHG) strength. Neuromuscular activation was also measured on the quadriceps, biceps brachii, and brachioradialis via surface electromyography (sEMG). Results: MHG declined by 7.8% (p < 0.001) by WI 5 with performance returning to baseline by 24-h post-WI. Brachioradialis neuromuscular activation increased by 42% on WI 5. MVIC knee extension performance dropped by 4% (p = 0.001) on WI 3 with a 11% overall decrease in quadriceps neuromuscular activation. Maximal IK knee extension dropped by 3.3% on WI 5 with 9% drop in overall quadriceps activation during the same period. MVIC elbow flexion declined by 5.1% on WI 5 but returned to baseline by 72-h post-WI. Maximal IK elbow flexion performance dropped by 8.6% on WI 5 with a continual decline in biceps brachii neuromuscular activation of 24% on WI 5. Conclusion: Consecutive, resting, long-duration hyperoxic WIs reduce muscular performance in multiple muscle groups and alter neuromuscular activation after 3 days of WI with performance adaptations recovering toward baseline by the end of the WI 5. However, neuromuscular activation remains decreased and appears to last beyond the 72-h post-WI recovery period.

15.
Front Physiol ; 10: 858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427978

RESUMO

PURPOSE: This study examined the effects of repeated long-duration hyperoxic water immersions (WIs) at 1.35 atmospheres absolute (ATA) on neuromuscular endurance performance. We hypothesized that over a 5-day period of consecutive, resting, long-duration hyperoxic WIs there would be a decrease to neuromuscular endurance performance and tissue oxygenation with the quadriceps muscle, but not with the forearm flexors. METHODS: Thirteen well-trained, male subjects completed five consecutive 6-h resting WIs with 18-h surface intervals during the dive week while breathing 100% oxygen at 1.35 ATA. We assessed skeletal muscle endurance performance before and after each WI, and 24 and 72 h after the final WI. Muscular endurance assessments included 40% maximal handgrip endurance (MHE) and 50-repetition maximal isokinetic (IK) knee extensions. Near-infrared spectroscopy (NIRS) was used to measure muscle oxidative capacity (MOC) of the vastus lateralis and localized muscle tissue oxygenation of the vastus lateralis and flexor carpi radialis. Simultaneously, we measured brachioradialis neuromuscular activation by surface electromyography (SEMG). RESULTS: MHE time-to-fatigue performance declined by 15% at WI 3 (p = 0.009) and by 17% on WI 5 (p = 0.002). Performance continued to decline by 22% at 24-h post-WI (p < 0.001) and by 12% on 72-h post-WI (p = 0.019). Fifty-repetition IK knee extension total work decreased by 5% (p = 0.002) on WI 3, and was further reduced by 7.5 and 12.3% (p = 0.032) at pre-WI 5 and 24-h post-WI, respectively. However, the rate of fatigue was 8 (p = 0.033) and 30% (p = 0.017) lower at WI 3 and 24-h post-WI when compared to WI 1, respectively, demonstrating the muscles were still fatigued from the previous hyperoxic WIs. We detected no significant limitations in oxygen off-loading kinetics during the exercise or MOC measurements. CONCLUSION: Repeated, resting, long-duration hyperoxic WIs caused significant reductions to muscular endurance but not to indirect measures of oxygen kinetics in load bearing and non-load bearing muscles.

16.
Temperature (Austin) ; 6(2): 150-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312674

RESUMO

Physiological responses to work in cold water have been well studied but little is known about the effects of exercise in warm water; an overlooked but critical issue for certain military, scientific, recreational, and professional diving operations. This investigation examined core temperature responses to fatiguing, fully-immersed exercise in extremely warm waters. Twenty-one male U.S. Navy divers (body mass, 87.3 ± 12.3 kg) were monitored during rest and fatiguing exercise while fully-immersed in four different water temperatures (Tw): 34.4, 35.8, 37.2, and 38.6°C (Tw34.4, Tw35.8, Tw37.2, and Tw38.6 respectively). Participants exercised on an underwater cycle ergometer until volitional fatigue or core temperature limits were reached. Core body temperature and heart rate were monitored continuously. Trial performance time decreased significantly as water temperature increased (Tw34.4, 174 ± 12 min; Tw35.8, 115 ± 13 min; Tw37.2, 50 ± 13 min; Tw38.6, 34 ± 14 min). Peak core body temperature during work was significantly lower in Tw34.4 water (38.31 ± 0.49°C) than in warmer temperatures (Tw35.8, 38.60 ± 0.55°C; Tw37.2, 38.82 ± 0.76°C; Tw38.6, 38.97 ± 0.65°C). Core body temperature rate of change increased significantly with warmer water temperature (Tw34.4, 0.39 ± 0.28°C·h-1; Tw35.8, 0.80 ± 0.19°C·h-1; Tw37.2, 2.02 ± 0.31°C·h-1; Tw38.6, 3.54 ± 0.41°C·h-1). Physically active divers risk severe hyperthermia in warmer waters. Increases in water temperature drastically increase the rate of core body temperature rise during work in warm water. New predictive models for core temperature based on workload and duration of warm water exposure are needed to ensure warm water diving safety.

17.
PLoS One ; 13(9): e0202892, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192774

RESUMO

This study examines differential effects of immersion, elevated oxygen partial pressure, and exercise on pulmonary function after series of five daily six-hour dives at 130 kPa (1.3 ATA), with 18 hours between dives. Five cohorts of 10 to 14 divers participated. The exposure phases were resting while breathing O2 or air in the water ("wetO2", "wetAir") or O2 in the hyperbaric chamber ("dryO2"), and exercise in the water while breathing O2 or air ("wetO2X", "wetAirX"). Respiratory symptoms were recorded during and after each dive, and pulmonary function (forced flow-volume) was measured twice at baseline before diving, after each dive both immediately and on the following morning, and three days post diving ("Day+3"). The incidences of symptoms and of flow volume changes from baseline greater than normal limits ("ΔFV") were assessed, as were mean ΔFV. The parameters examined were forced vital capacity (FVC), forced expired volume in 1 second (FEV1), and forced expired flow from 25% to 75% volume expired (FEF25-75). The phases ranked from greatest to least fraction of diver-days with symptoms were wetO2X (56%) > dryO2 (42%) > wetO2 (13%) > [wetAir (2%) or wetAirX (1%)] (p<0.05). FEV1 and FEF25-75 were depressed in the morning following wetO2 and wetO2X and on Day+3 after and wetO2X, but increased immediately following each wetAirX dive. O2 exposures caused symptoms and ΔFV suggestive of pulmonary oxygen toxicity,exacerbated by exercise. Indices of small airway function showed late (17-hour) post-O2 exposure deficits, but, particularly with exercise, improvement was evident early after exposure with or without O2. FEF25-75 and FEV1 remained depressed on Day+3 after wetO2 and wetO2X.


Assuntos
Mergulho/fisiologia , Hiperóxia/fisiopatologia , Pulmão/fisiologia , Pulmão/fisiopatologia , Adulto , Estudos de Coortes , Humanos , Testes de Função Respiratória , Adulto Jovem
18.
Front Physiol ; 9: 977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100879

RESUMO

Purpose: This study examined the effects of repeated long-duration water immersions (WI)s at 1.35 atmospheres absolute (ATA) on neuromuscular endurance performance. We hypothesized that, following 5 days of consecutive, resting, long-duration WIs, neuromuscular endurance performance would decrease. Methods: Fifteen well-trained, male subjects completed five consecutive 6-h resting WIs with 18-h surface intervals during the dive week while breathing compressed air at 1.35 ATA. Skeletal muscle endurance performance was assessed before and after each WI, and 24 and 72 h after the final WI. Muscular endurance assessments included 40% maximum handgrip endurance (MHE) and 50-repetition maximal isokinetic knee extensions. Near infrared spectroscopy was used to measure muscle oxidative capacity of the vastus lateralis and localized muscle tissue oxygenation of the vastus lateralis and flexor carpi radialis. Simultaneously, brachioradialis neuromuscular activation was measured by surface electromyography. Results: A 24.9% increase (p = 0.04) in the muscle oxidative capacity rate constant (k) occurred on WI 4 compared to baseline. No changes occurred in 40% MHE time to exhaustion or rate of fatigue or total work performed for the 50-repetition maximal isokinetic knee extension. The first quartile of deoxygenated hemoglobin concentration showed a 6 and 35% increase on WIs 3 and 5 (p = 0.026) with second quartile increases of 9 and 32% on WIs 3 and 5 (p = 0.049) during the 40% MHE testing when compared to WI 1. Conclusion: Our specific WI protocol resulted in no change to muscular endurance and oxygen kinetics in load bearing and non-load bearing muscles.

19.
PLoS One ; 13(6): e0198328, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856815

RESUMO

The electrodermal activity (EDA) is a useful tool for assessing skin sympathetic nervous activity. Using spectral analysis of EDA data at rest, we have previously found that the spectral band which is the most sensitive to central sympathetic control is largely confined to 0.045 to 0.25 Hz. However, the frequency band associated with sympathetic control in EDA has not been studied for exercise conditions. Establishing the band limits more precisely is important to ensure the accuracy and sensitivity of the technique. As exercise intensity increases, it is intuitive that the frequencies associated with the autonomic dynamics should also increase accordingly. Hence, the aim of this study was to examine the appropriate frequency band associated with the sympathetic nervous system in the EDA signal during exercise. Eighteen healthy subjects underwent a sub-maximal exercise test, including a resting period, walking, and running, until achieving 85% of maximum heart rate. Both EDA and ECG data were measured simultaneously for all subjects. The ECG was used to monitor subjects' instantaneous heart rate, which was used to set the experiment's end point. We found that the upper bound of the frequency band (Fmax) containing the EDA spectral power significantly shifted to higher frequencies when subjects underwent prolonged low-intensity (Fmax ~ 0.28) and vigorous-intensity exercise (Fmax ~ 0.37 Hz) when compared to the resting condition. In summary, we have found shifting of the sympathetic dynamics to higher frequencies in the EDA signal when subjects undergo physical activity.


Assuntos
Exercício Físico/fisiologia , Resposta Galvânica da Pele/fisiologia , Adolescente , Adulto , Sistema Nervoso Autônomo/fisiopatologia , Teste de Esforço , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
20.
Ann Biomed Eng ; 46(9): 1397-1405, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29736693

RESUMO

Underwater surface electromyography (sEMG) signals are especially of interest for rehabilitation and sports medicine applications. Silver/silver chloride (Ag/AgCl) hydrogel electrodes, although the gold standard for sEMG data collection, require waterproofing for underwater applications. Having to apply waterproof tape over electrodes impedes the deployment of sEMG in immersed conditions. As a better alternative for underwater applications, we have developed carbon black/polydimethylsiloxane (CB/PDMS) electrodes for collecting sEMG signals under water. We recruited twenty subjects to collect simultaneous recordings of sEMG signals using Ag/AgCl and CB/PDMS electrodes on biceps brachii, triceps brachii, and tibial anterior muscles. The Ag/AgCL electrodes were covered in waterproof tape, and the CB/PDMS electrodes were not. We found no differences in sEMG signal amplitudes between both sensors, for the three muscles. Moderate mean correlation between Ag/AgCl and CB/PDMS electrodes was found on the linear envelopes (≥ 0.7); correlation was higher for power spectral densities (≥ 0.84). Ag/AgCl electrodes performed better in response to noise, whilst the CB/PDMS electrodes were more sensitive to myoelectric activity in triceps and tibialis, and exhibited better response to motion artifacts in the measurements on the triceps and tibialis. Results suggest that sEMG signal collection is possible under water using CB/PDMS electrodes without requiring any waterproof or adhesive tape.


Assuntos
Eletromiografia/instrumentação , Eletromiografia/métodos , Água , Adolescente , Adulto , Eletrodos , Feminino , Humanos , Masculino , Prata/química , Compostos de Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA