RESUMO
Exposure to ultraviolet radiation (UVR) leads to skin DNA damage, specifically in the form of cyclobutane pyrimidine dimers, with thymidine dimers being the most common. Quantifying these dimers can indicate the extent of DNA damage resulting from UVR exposure. Here, a new liquid chromatography-mass spectrometry (LC-MS) method was used to quantify thymidine dimers in the urine after a temporary increase in real-life UVR exposure. Healthy Danish volunteers (n = 27) experienced increased UVR exposure during a winter vacation. Individual exposure, assessed via personally worn electronic UVR dosimeters, revealed a mean exposure level of 32.9 standard erythema doses (SEDs) during the last week of vacation. Morning urine thymidine dimer concentrations were markedly elevated both 1 and 2 days post-vacation, and individual thymidine dimer levels correlated with UVR exposure during the last week of the vacation. The strongest correlation with erythema-weighted personal UVR exposure (Power model, r2 = 0.64, p < 0.001) was observed when both morning urine samples were combined to measure 48-h thymidine dimer excretion, whereas 24-h excretion based on a single sample provided a weaker correlation (Power model, r2 = 0.55, p < 0.001). Sex, age, and skin phototype had no significant effect on these correlations. For the first time, urinary thymidine dimer excretion was quantified by LC-MS to evaluate the effect of a temporary increase in personal UVR exposure in a real-life setting. The high sensitivity to elevated UVR exposure and correlation between urinary excretion and measured SED suggest that this approach may be used to quantify DNA damage and repair and to evaluate photoprevention strategies.
Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , Humanos , Dímeros de Pirimidina/análise , Masculino , Adulto , Feminino , Dano ao DNA , Pessoa de Meia-Idade , Espectrometria de Massas , Cromatografia Líquida , Adulto Jovem , Exposição à Radiação/análise , Voluntários SaudáveisRESUMO
INTRODUCTION: This study examined the impact of different upper-torso sportswear technologies on the performance and physiological heat strain of well-trained and national-level athletes during prolonged running in moderately hot conditions. METHODS: A randomized crossover design was employed in which 20 well-trained (n = 16) and national-level (n = 4) athletes completed four experimental trials in moderately hot conditions (35°C, 30% relative humidity). In each trial, participants ran at 70% of their peak oxygen uptake (70% VÌO2peak ) for 60 min, while wearing a different upper-body garment: cotton t-shirt, t-shirt with sweat-wicking fabric, compression t-shirt, and t-shirt with aluminum dots lining the inside of the upper back of the garment. Running speed was adjusted to elicit the predetermined oxygen consumption associated with 70% VÌO2peak . Physiological (core and skin temperatures, total body water loss, and urine specific gravity) and perceptual (thermal comfort and sensation, ratings of perceived exertion, and garment cooling functionality) parameters along with running speed at 70% VÌO2peak were continuously recorded. RESULTS: No significant differences were observed between the four garments for running speed at 70% VÌO2peak , physiological heat strain, and perceptual responses (all p > 0.05). The tested athletes reported larger areas of perceived suboptimal cooling functionality in the cotton t-shirt and the t-shirt with aluminum dots relative to the sweat-wicking and compression t-shirts (d: 0.43-0.52). CONCLUSION: There were not differences among the tested garments regarding running speed at 70% VÌO2peak , physiological heat strain, and perceptual responses in well-trained and national-level endurance athletes exercising in moderate heat.
Assuntos
Regulação da Temperatura Corporal , Corrida , Humanos , Alumínio , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Temperatura Alta , Corrida/fisiologia , Temperatura Cutânea , Sudorese , Estudos Cross-OverRESUMO
INTRODUCTION: The recommended treatment for exertional heat stroke is immediate, whole-body immersion in < 10 °C water until rectal temperature (Tre) reaches ≤ 38.6 °C. However, real-time Tre assessment is not always feasible or available in field settings or emergency situations. We defined and validated immersion durations for water temperatures of 2-26 °C for treating exertional heat stroke. METHODS: We compiled data for 54 men and 18 women from 7 previous laboratory studies and derived immersion durations for reaching 38.6 °C Tre. The resulting immersion durations were validated against the durations of cold-water immersion used to treat 162 (98 men; 64 women) exertional heat stroke cases at the Falmouth Road Race between 1984 and 2011. RESULTS: Age, height, weight, body surface area, body fat, fat mass, lean body mass, and peak oxygen uptake were weakly associated with the cooling time to a safe Tre of 38.6 °C during immersions to 2-26 °C water (R2 range: 0.00-0.16). Using a specificity criterion of 0.9, receiver operating characteristics curve analysis showed that exertional heat stroke patients must be immersed for 11-12 min when water temperature is ≤ 9 °C, and for 18-19 min when water temperature is 10-26 °C (Cohen's Kappa: 0.32-0.75, p < 0.001; diagnostic odds ratio: 8.63-103.27). CONCLUSION: The reported immersion durations are effective for > 90% of exertional heat stroke patients with pre-immersion Tre of 39.5-42.8 °C. When available, real-time Tre monitoring is the standard of care to accurately diagnose and treat exertional heat stroke, avoiding adverse health outcomes associated with under- or over-cooling, and for implementing cool-first transport second exertional heat stroke policies.
Assuntos
Temperatura Corporal , Golpe de Calor , Masculino , Humanos , Feminino , Temperatura , Imersão , Água , Exercício Físico , Golpe de Calor/terapia , Golpe de Calor/diagnóstico , Temperatura BaixaRESUMO
RATIONALE: Monitoring physiological strain is recommended to safeguard workers during heat exposure, but is logistically challenging. The perceptual strain index (PeSI) is a subjective estimate thought to reflect the physiological strain index (PSI) that requires no physiological monitoring. However, sex is known to influence perceptions of heat stress, potentially limiting the utility of the PeSI. OBJECTIVES: The objective of this study was to assess whether sex modifies the relationship between PeSI and PSI. METHODS: Thirty-four adults (15 females) walked on a treadmill (moderate intensity; ~200 W/m2) for 180 min or until termination (volitional fatigue, rectal temperature ≥39.5°C) in 16°C, 24°C, 28°C, and 32°C wet-bulb globe temperatures. Rectal temperature and heart rate were recorded to calculate PSI (0-10 scale). Rating of perceived exertion and thermal sensation were recorded to calculate PeSI (0-10 scale). Relationships between PSI and PeSI were evaluated via linear mixed models. Mean bias (95% limits of agreement [LoA]) between PSI and PeSI was assessed via Bland-Altman analysis. Mean absolute error between measures was calculated by summing absolute errors between the PeSI and the PSI and dividing by the sample size. FINDINGS: PSI increased with PeSI (p < 0.01) but the slope of this relation was not different between males and females (p = 0.83). Mean bias between PSI and PeSI was small (-0.4 points), but the 95% LoA (-3.5 to 2.7 points) and mean absolute error were wide (1.3 points). IMPACT: Our findings indicate that sex does not appreciably impact the agreement between the PeSI and PSI during simulated occupational heat stress. The PeSI is not a suitable surrogate for the PSI in either male or female workers.
Assuntos
Transtornos de Estresse por Calor , Estresse Ocupacional , Adulto , Humanos , Masculino , Feminino , Temperatura Corporal/fisiologia , Autorrelato , Resposta ao Choque Térmico , Teste de Esforço , Frequência Cardíaca/fisiologia , Temperatura Alta , Estresse Fisiológico/fisiologiaRESUMO
(1) Background: It is important to monitor the body core temperature (Tc) of individuals with chronic heart failure (CHF) during rest or exercise, as they are susceptible to complications. Gastrointestinal capsules are a robust indicator of the Tc at rest and during exercise. A practical and non-invasive sensor called CALERA Research was recently introduced, promising accuracy, sensitivity, continuous real-time analysis, repeatability, and reproducibility. This study aimed to assess the validity of the CALERA Research sensor when monitoring patients with CHF during periods of rest, throughout brief cardiopulmonary exercise testing, and during their subsequent recovery. (2) Methods: Twelve male CHF patients volunteered to participate in a 70-min protocol in a laboratory at 28 °C and 39% relative humidity. After remaining calm for 20 min, they underwent a symptom-limited stress test combined with ergospirometry on a treadmill, followed by 40 min of seated recovery. The Tc was continuously monitored by both Tc devices. (3) Results: The Tc values from the CALERA Research sensor and the gastrointestinal sensor showed no associations at rest (r = 0.056, p = 0.154) and during exercise (r = -0.015, p = 0.829) and a weak association during recovery (r = 0.292, p < 0.001). The Cohen's effect size of the differences between the two Tc assessment methods for rest, exercise, and recovery was 1.04 (large), 0.18 (none), and 0.45 (small), respectively. The 95% limit of agreement for the CALERA Research sensor was -0.057 ± 1.03 °C. (4) Conclusions: The CALERA sensor is a practical and, potentially, promising device, but it does not provide an accurate Tc estimation in CHF patients at rest, during brief exercise testing, and during recovery.
Assuntos
Exercício Físico , Insuficiência Cardíaca , Humanos , Masculino , Reprodutibilidade dos Testes , Temperatura , Temperatura Corporal , Insuficiência Cardíaca/diagnóstico , Teste de EsforçoRESUMO
While monitoring physiological strain is recommended to safeguard workers during heat exposure, it is logistically challenging. The perceptual strain index (PeSI) is a subjective estimate thought to reflect the physiological strain index (PSI) that requires no direct monitoring. However, advanced age and chronic diseases (hypertension/type 2 diabetes [T2D]) influence the perception of heat stress, potentially limiting the utility of the PeSI. We therefore assessed whether the relation and agreement between the PeSI and PSI during simulated work in various environmental conditions is modified by age and T2D/hypertension. Thirteen young adults and 37 older adults without (n = 14) and with T2D (n = 10) or hypertension (n = 13) walked on a treadmill (â¼200 W/m2) for 180 min or until termination (volitional fatigue, rectal temperature ≥39.5 °C) in 16, 24, 28, and 32 °C wet-bulb globe temperatures. Rectal temperature and heart rate were recorded to calculate PSI (0-10 scale). Rating of perceived exertion and thermal sensation were recorded to calculate PeSI (0-10 scale). The relation between hourly PSI and PeSI was assessed via linear mixed models. Mean bias (95% limits of agreement [LoA]) between PSI and PeSI was assessed via Bland-Altman analysis. PSI increased with PeSI (p < 0.001), but the slope of this relation was not different between young and older adults (p = 0.189) or as a function of chronic disease (within older adults; p = 0.183). The mean bias between PSI and PeSI was small (0.02), but the 95% LoA was wide (-3.3-3.4). Together, a linear relation between PeSI and PSI was observed but agreement between these measures varied considerably across individuals and thus PeSI should not be used as a surrogate marker of PSI. Caution should be taken when utilizing the PeSI to estimate physiological strain on workers.
RESUMO
PURPOSE: This study examined physiological and perceptual parameters related to cold-induced vasodilation (CIVD) in the fingers and toes of people with paraplegia and compared them with responses observed in able-bodied individuals. METHODS: Seven participants with paraplegia and seven able-bodied individuals participated in a randomized matched-controlled study involving left-hand and -foot immersion in cold water (8 ± 1 °C) for 40 min during exposure to cool (16 ± 1 °C), thermoneutral (23 ± 1 °C), and hot (34 ± 1 °C) ambient conditions. RESULTS: Similar CIVD occurrence was observed in the fingers in the two groups. In toes, three of the seven participants with paraplegia revealed CIVDs: one in cool, two in thermoneutral, and three in hot conditions. No able-bodied participants revealed CIVDs in cool and thermoneutral conditions, while four revealed CIVDs in hot conditions. The toe CIVDs of paraplegic participants were counterintuitive in several respects: they were more frequent in cool and thermoneutral conditions (compared to the able-bodied participants), emerged in these conditions despite lower core and skin temperatures of these participants, and were evident only in cases of thoracic level lesions (instead of lesions at lower spinal levels). CONCLUSION: Our findings demonstrated considerable inter-individual variability in CIVD responses in both the paraplegic and able-bodied groups. While we observed vasodilatory responses in the toes of participants with paraplegia that technically fulfilled the criteria for CIVD, it is unlikely that they reflect the CIVD phenomenon observed in able-bodied individuals. Taken together, our findings favor the contribution of central over peripheral factors in relation to the origin and/or control of CIVD.
Assuntos
Hipotensão , Vasodilatação , Humanos , Vasodilatação/fisiologia , Dedos do Pé/fisiologia , Dedos/fisiologia , Temperatura Baixa , Temperatura Cutânea , ParaplegiaRESUMO
The brain's temperature measurements (TB) in patients with severe brain damage are important, in order to offer the optimal treatment. The purpose of this research is the creation of mathematical models for the TB's prediction, based on the temperatures in the bladder (TBL), femoral artery (TFA), ear canal (TΕC), and axilla (TA), without the need for placement of intracranial catheter, contributing significantly to the research of the human thermoregulatory system.The research involved 18 patients (13 men and 5 women), who were hospitalized in the adult intensive care units (ICU) of Larissa's two hospitals, with severe brain injury. An intracranial catheter with a thermistor was used to continuously measure TB and other parameters. The TB's measurements, and simultaneously one or more of TBL, TFA, TEC, and TA, were recorded every 1 h.To create TB predicting models, the data of each measurement was separated into (a) model sample (measurements' 80%) and (b) validation sample (measurements' 20%). Multivariate linear regression analysis demonstrated that it is possible to predict brain's temperature (PrTB), using independent variables (R2 was TBL = 0.73, TFA = 0.80, TEC = 0.27, and TA = 0.17, p < 0.05). Significant linear associations were found, statistically, and no difference in means between TB and PrTB of each prediction model. Also, the 95% limits of agreement and the percent coefficient of variation showed sufficient agreement between the TB and PrTB in each prediction model.In conclusion, brain's temperature prediction models based on TBL, TFA, TEC, and TA were successful. Its determination contributes to the improvement of clinical decision-making.
Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Masculino , Adulto , Humanos , Feminino , Temperatura , Lesões Encefálicas Traumáticas/diagnóstico , Temperatura Corporal , Lesões Encefálicas/diagnóstico , Cateterismo , Pressão IntracranianaRESUMO
BACKGROUND: Specialized occupational health and safety (OHS) issues are covered at the EU level through detailed legislation and guidelines. Unfortunately, this does not extend to occupational heat stress, not only in Greece but also (with few exceptions) internationally. One possible explanation could be the difficulty in accurately identifying the dangerous conditions, as many environmental and individualized elements are involved, and hundreds of "thermal stress indicators" are available. Another explanation could be the difficulty in adequately measuring hazardous conditions for workers affected more (i.e., outdoor and high intensity) since the biological protection framework is based on the human body's internal temperature. METHODS: The Wet Bulb Globe Temperature (WBGT) has been proposed as the most efficacious thermal stress indicator. Since 2021, the Hellenic National Meteorological Service has provided 48-h WBGT forecast predictions to serve as a first level of alert. Real-time measurements and 48-h forecasts of WBGT are also available through a smartphone application. Additionally, as revealed when developing the occupational heat stress legislation in Cyprus and Qatar, crucial first steps are identifying the specific characteristics of worker exposure and the tripartite collaboration between employers, workers, and the State. RESULTS: Evaluating the simplified WBGT forecasted values and the smartphone application estimates proved well-established. The sound scientific basis can be effectively combined with administrative measures based on the EU OHS legislative experience to produce practical solutions. CONCLUSIONS: As the climate crisis exacerbates, worker productivity and well-being will decline, underscoring the urgent need for an integrated protection framework. Such a framework is proposed here.
Assuntos
Estresse Ocupacional , Condições de Trabalho , Humanos , TemperaturaRESUMO
High workplace temperatures negatively impact physical work capacity (PWC). Although PWC loss models with heat based on 1-h exposures are available, it is unclear if further adjustments are required to accommodate repeated work/rest cycles over the course of a full work shift. Therefore, we examined the impact of heat stress exposure on human PWC during a simulated work shift consisting of six 1-h work-rest cycles. Nine healthy males completed six 50-min work bouts, separated by 10-min rest intervals and an extended lunch break, on four separate occasions: once in a cool environment (15 °C/50% RH) and in three different air temperature and relative humidity combinations (moderate, 35 °C/50% RH; hot, 40 °C/50% RH; and very hot, 40 °C/70%). To mimic moderate to heavy workload, work was performed on a treadmill at a fixed heart rate of 130 beats·min-1. During each work bout, PWC was quantified as the kilojoules expended above resting levels. Over the shift, work output per cycle decreased, even in the cool climate, with the biggest decrement after the lunch break and meal consumption. Expressing PWC relative to that achieved in the cool environment for the same work duration, there was an additional 5(± 4)%, 7(± 6)%, and 16(± 7)% decrease in PWC when work was performed across a full work shift for the moderate, hot, and very hot condition respectively, compared with 1-h projections. Empirical models to predict PWC based on the level of heat stress (Wet-Bulb Globe Temperature, Universal Thermal Climate Index, Psychrometric Wet-Bulb Temperature, Humidex, and Heat Index) and the number of work cycles performed are presented.
Assuntos
Transtornos de Estresse por Calor , Masculino , Humanos , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia , Local de TrabalhoRESUMO
Increasing air movement can alleviate or exacerbate occupational heat strain, but the impact is not well defined across a wide range of hot environments, with different clothing levels. Therefore, we combined a large empirical study with a physical model of human heat transfer to determine the climates where increased air movement (with electric fans) provides effective body cooling. The model allowed us to generate practical advice using a high-resolution matrix of temperature and humidity. The empirical study involved a total of 300 1-h work trials in a variety of environments (35, 40, 45, and 50 °C, with 20 up to 80% relative humidity) with and without simulated wind (3.5 vs 0.2 mâs-1), and wearing either minimal clothing or a full body work coverall. Our data provides compelling evidence that the impact of fans is strongly determined by air temperature and humidity. When air temperature is ≥ 35 °C, fans are ineffective and potentially harmful when relative humidity is below 50%. Our simulated data also show the climates where high wind/fans are beneficial or harmful, considering heat acclimation, age, and wind speed. Using unified weather indices, the impact of air movement is well captured by the universal thermal climate index, but not by wet-bulb globe temperature and aspirated wet-bulb temperature. Overall, the data from this study can inform new guidance for major public and occupational health agencies, potentially maintaining health and productivity in a warming climate.
Assuntos
Temperatura Alta , Suor , Regulação da Temperatura Corporal , Vestuário , Resposta ao Choque Térmico , Humanos , Umidade , Roupa de Proteção , TemperaturaRESUMO
Heat stress decreases human physical work capacity (PWC), but the extent to which solar radiation (SOLAR) compounds this response is not well understood. This study empirically quantified how SOLAR impacts PWC in the heat, considering wide, but controlled, variations in air temperature, humidity, and clothing coverage. We also provide correction equations so PWC can be quantified outdoors using heat stress indices that do not ordinarily account for SOLAR (including the Heat Stress Index, Humidex, and Wet-Bulb Temperature). Fourteen young adult males (7 donning a work coverall, 7 with shorts and trainers) walked for 1 h at a fixed heart rate of 130 beatsâmin-1, in seven combinations of air temperature (25 to 45°C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m2 from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature and clothing conditions. Wet-Bulb Globe Temperature and the Universal Thermal Climate Index represented SOLAR correctly and did not require a correction factor. For the Heat Stress Index, Humidex, and Wet-Bulb Temperature, correction factors are provided enabling forecasting of heat effects on work productivity.
Assuntos
Transtornos de Estresse por Calor , Vestuário , Temperatura Alta , Humanos , Umidade , Masculino , Temperatura Cutânea , Temperatura , Adulto JovemRESUMO
While exercise benefits a wide spectrum of diseases and affects most tissues and organs, many aspects of its underlying mechanistic effects remain unsolved. In vitro exercise, mimicking neuronal signals leading to muscle contraction in vitro, can be a valuable tool to address this issue. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for this systematic review and meta-analysis, we searched EMBASE and PubMed (from database inception to 4 February 2022) for relevant studies assessing in vitro exercise using electrical pulse stimulation to mimic exercise. Meta-analyses of mean differences and meta-regression analyses were conducted. Of 985 reports identified, 41 were eligible for analysis. We observed variability among existing protocols of in vitro exercise and heterogeneity among protocols of the same type of exercise. Our analyses showed that AMPK, Akt, IL-6, and PGC1a levels and glucose uptake increased in stimulated compared to non-stimulated cells, following the patterns of in vivo exercise, and that these effects correlated with the duration of stimulation. We conclude that in vitro exercise follows motifs of exercise in humans, allowing biological parameters, such as the aforementioned, to be valuable tools in defining the types of in vitro exercise. It might be useful in transferring obtained knowledge to human research.
Assuntos
Exercício Físico , Contração Muscular , Humanos , Linhagem Celular , Células Cultivadas , Estimulação Elétrica , Exercício Físico/fisiologia , Contração Muscular/fisiologiaRESUMO
Cancer is a set of diseases characterized by several hallmark properties, such as increased angiogenesis, proliferation, invasion, and metastasis. The increased angiogenic activity constantly supplies the tumors with nutrients and a plethora of cytokines to ensure cell survival. Along these cytokines is a newly discovered protein, called irisin, which is released into the circulation after physical exercise. Irisin is the product of fibronectin type III domain-containing protein 5 (FNDC5) proteolytic cleavage. Recently it has been the topic of investigation in several types of cancer. In this study, we conducted a systematic review and meta-analysis to investigate its implication in different types of cancer. Our results suggest that irisin expression is decreased in cancer patients, thus it can be used as a valid biomarker for the diagnosis of several types of cancer. In addition, our results indicate that irisin may have an important role in tumor progression and metastasis since it is involved in multiple signaling pathways that promote cell proliferation and migration.
Assuntos
Fibronectinas , Neoplasias , Citocinas , Exercício Físico , Fibronectinas/metabolismo , Humanos , Fatores de TranscriçãoRESUMO
Previous field studies monitoring small groups of participants showed that heat stress in the electrical utilities industry may be detrimental to worker health and safety. Our aim in this study was to characterize heat stress and strain in electrical utilities workers across North America. A total of 428 workers in the power generation, transmission, and distribution industry across 16 U.S. states and 3 Canadian Provinces completed a two-part on-line questionnaire anonymously. The first part comprised 13 general questions on the employee's workplace location, role in the organization, years of experience, general duties, average work shift duration, and other job-related information. It also included two questions on self-reported heat stress. The second part consisted of the "Heat Strain Score Index" (HSSI), a validated questionnaire which evaluates heat stress at the workplace as "safe level" (score ≤13.5: worker experiences no/low heat strain), "caution level" (score 13.6 to 18.0: moderate risk for heat strain), and "danger level" (score >18.0: high risk for heat strain). In addition to the survey, we obtained meteorological data from weather stations in proximity (12.3 ± 12.2 km) to the work locations. Based on the HSSI, 32.9%, 22.3%, and 44.4% of the responders' workplaces were diagnosed as "safe level," "caution level," and "danger level," respectively. The HSSI varied significantly depending on the occupation from 4.9 ± 3.2 in contact center workforce to 19.1 ± 5.4 in mechanics (p < 0.001), and demonstrated moderate linear relationships with summertime (June, July, August) midday air temperature (r = 0.317, p < 0.001) and outdoor midday Wet-Bulb Globe Temperature (r = 0.322, p < 0.001). The highest HSSI was observed in mechanics, machine operators in line installations, line workers, electricians, and meter-readers. We conclude that electrical utilities workers experience instances of severe environmental heat stress resulting in elevated levels of heat strain, particularly when performing physically demanding tasks (e.g., manually climbing utility poles, installing lines).
Assuntos
Transtornos de Estresse por Calor , Exposição Ocupacional , Canadá , Transtornos de Estresse por Calor/epidemiologia , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Inquéritos e QuestionáriosRESUMO
BACKGROUND: The electromagnetic spectrum spans over an enormous range from 0 up to more than 1020 Hz in the deep ionizing region, significant exposures exist in specific occupational environments. Between the ionizing and the electromagnetic fields (EMF) part of the spectrum, the 'optical radiation' (OR) region has specific properties. Comparative and concise evaluation enables action prioritization. METHODS: Following the transposition and implementation periods of the artificial optical radiation (AOR) and EMF European Directives, the Hellenic Ministry of Labour in collaboration with the Greek Atomic Energy Commission (EEAE) and the National Technical University of Athens, conducted thorough occupational exposure investigation in Greece. Using dedicated measuring equipment and procedures, the majority of EMF emitting installations in Greece and also AOR emitting installations including arc welding, lasers and PC monitors has been assessed. RESULTS: Measurement results from occupational settings reveal that it is the non-coherent metal arc welding AOR that can pose even sub-second overexposures. Rare EMF overexposures are manageable and EMF concern is not justified. Maintenance procedures demand proper attention. Preliminary laser safety assessment reveals OHS gaps and potential eye and skin hazards. Blue light exposure from computer monitors is well below safety limits. CONCLUSIONS: This electromagnetic spectrum risk assessment conducted in Greece enables the justification of the real occupational hazards, in this sense: i) EMF exposure assessment has to be concentrated to maintenance procedures; ii) AOR measuring setups are challenging and standardized measurement procedures are missing, and iii) AOR overexposures from arc welding pose significant eye and skin hazards.
Assuntos
Exposição Ocupacional , Exposição à Radiação , Campos Eletromagnéticos/efeitos adversos , Grécia , HumanosRESUMO
Ambient temperature can affect the survival rate of humans. Studies have shown a relationship between ambient temperature and mortality rate in hot and cold environments. This effect of ambient temperature on mortality seems to be more pronounced in older people. The aim of this study is to examine the effects of thermal stress on cardiovascular mortality and the associated relative risk per degree Celsius in Greek individuals ≥70 years old. Mortality data 1999-2012 were matched with the midday temperature. The present study found a higher circulatory mortality when ambient temperature is below or above the temperature range 6 to 39 °C.
Assuntos
Doenças Cardiovasculares , Temperatura Baixa , Idoso , Doenças Cardiovasculares/diagnóstico , Grécia/epidemiologia , Temperatura Alta , Humanos , TemperaturaRESUMO
Occupational heat stress directly hampers physical work capacity (PWC), with large economic consequences for industries and regions vulnerable to global warming. Accurately quantifying PWC is essential for forecasting impacts of different climate change scenarios, but the current state of knowledge is limited, leading to potential underestimations in mild heat, and overestimations in extreme heat. We therefore developed advanced empirical equations for PWC based on 338 work sessions in climatic chambers (low air movement, no solar radiation) spanning mild to extreme heat stress. Equations for PWC are available based on air temperature and humidity, for a suite of heat stress assessment metrics, and mean skin temperature. Our models are highly sensitive to mild heat and to our knowledge are the first to include empirical data across the full range of warm and hot environments possible with future climate change across the world. Using wet bulb globe temperature (WBGT) as an example, we noted 10% reductions in PWC at mild heat stress (WBGT = 18°C) and reductions of 78% in the most extreme conditions (WBGT = 40°C). Of the different heat stress indices available, the heat index was the best predictor of group level PWC (R2 = 0.96) but can only be applied in shaded conditions. The skin temperature, but not internal/core temperature, was a strong predictor of PWC (R2 = 0.88), thermal sensation (R2 = 0.84), and thermal comfort (R2 = 0.73). The models presented apply to occupational workloads and can be used in climate projection models to predict economic and social consequences of climate change.
Assuntos
Transtornos de Estresse por Calor , Exposição Ocupacional , Mudança Climática , Temperatura Alta , Humanos , UmidadeRESUMO
Workers in the electric power industry commonly perform physically demanding jobs in hot environments, which combined with the protective clothing worn, places them at risk of disease and health problems related to occupational heat stress. With climate change fueling an increase in the occurrence of hot weather, a targeted approach to heat stress management within the industry is needed. To better understand current heat management practices and identify opportunities for refinement, we conducted an exploratory survey among 33 electric utility companies operating in the United States (n = 32) and Canada (n = 1). Forty-six employees responsible for health and safety of company workers completed 26 questions assessing heat stress as a workplace hazard and heat management practices within five categories: (1) use and administration of heat stress management program; (2) surveillance of heat stress and heat strain; (3) job evaluation and heat-mitigation guidance; (4) education and training programs; and (5) treatment of heat-related illness. While a majority of the respondents (87.0%) indicated heat stress is a workplace hazard and their organization has a heat stress management program (78.3%), less than half reported performing real-time monitoring of heat stress in the workplace (47.8%) or tracking worker heat strain (19.6%) (i.e., physiological response to heat stress). However, most organizations indicated they conducted pre-job evaluations for heat stress (71.7%) and implemented an employee training program on managing heat stress (73.9%). The latter included instruction on various short- and long-term heat-mitigation guidance for workers (e.g., use of work exposure limits, hydration protocols) and the prevention (52.2%) and treatment (63.1%) of heat-related illnesses. Altogether, our survey demonstrates that although many companies employ some form of a heat management program, the basic components defining the programs vary and are lacking for some companies. To maximize worker health and safety during work in hot environments, a consensus-based approach, which considers the five basic components of a heat management program, should be employed to formulate effective practices and methodologies for creating an industry-specific heat management strategy.
Assuntos
Transtornos de Estresse por Calor , Exposição Ocupacional , Saúde Ocupacional , Estresse Ocupacional , Transtornos de Estresse por Calor/prevenção & controle , Resposta ao Choque Térmico , Humanos , Exposição Ocupacional/prevenção & controle , Inquéritos e Questionários , Estados Unidos , Local de TrabalhoRESUMO
NEW FINDINGS: What is the central question of this study? Repeated heat exposure during the summer months can enhance heat loss in humans (seasonal heat acclimatisation), but does the magnitude of that enhancement differ between young and older adults when assessed during passive heat exposure? What is the main finding and its importance? While seasonal heat acclimatisation enhanced evaporative heat loss (i.e. sweating) in both young and older adults, those improvements led to a greater reduction in body heat storage in older adults. These outcomes indicate that heat acclimatisation may confer greater thermoregulatory benefits with increasing age. ABSTRACT: Repeated heat exposure throughout summer can enhance heat loss in humans (seasonal heat acclimatisation), although the effect of ageing on those improvements remains unclear. We therefore sought to assess thermoregulatory function in young and older adults during environmental heat exposure prior to and following seasonal heat acclimatisation, hypothesizing that the magnitude of adaptation would be greater in older relative to young adults. To achieve this, 14 young (19-27 years) and 10 older adults (55-72 years), who resided in a temperate humid-continental climate, completed a 3 h resting heat exposure (44°C, â¼30% relative humidity) in the winter-spring months as part of a larger investigation (pre-acclimatisation), before being re-evaluated using the same heat stress test following the summer months (post-acclimatisation). Whole-body dry and evaporative heat exchange, and metabolic rate were measured throughout using direct and indirect calorimetry (respectively), and used to quantify body heat storage (metabolic rate + dry heat gain - evaporative heat loss). Evaporative heat loss increased in both groups following acclimatisation, but those improvements led to a decrease in body heat storage in older (mean difference (95% CI); 213 (295, 131) kJ; P < 0.001), but not young adults (-25 (-94, 44) kJ; P = 0.458). Thus, body heat storage was greater in older compared to young adults before (222 (123, 314) kJ; P < 0.001), but not following acclimatisation (34 (-55, 123) kJ; P = 0.433). Although there is a need for larger and more controlled confirmatory studies, our findings indicate that seasonal heat acclimatisation may induce greater thermoregulatory adaptation in older compared to young adults.