Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ren Fail ; 39(1): 629-642, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28805484

RESUMO

Uncontrolled activation of transforming growth factor beta (TGF-ß) family members is hypothesized to participate in type 2 diabetes (T2D) dependent diabetic nephropathy (DN). We evaluated and compared downstream activation of the Smad2-signaling pathway in kidney samples from T2D patients to kidneys from the T2D model of leptin receptor deficient db/db mouse. Furthermore, expression of TGF-ß family members was evaluated to elucidate molecular mechanisms in the mouse model. Kidney samples from patients with advanced stages of DN showed elevated pSmad2 staining whereas db/db mouse kidneys surprisingly showed a decrease in pSmad2 in the tubular compartment. Structurally, kidney tissue showed dilated tubules and expanded glomeruli, but no clear fibrotic pattern was found in the diabetic mice. Selective TGF-ß family members were up-regulated at the mRNA level. Antagonists of bone morphogenetic protein (BMP) ligands, such as Gremlin1, USAG1 and Sclerostin, were strongly up-regulated suggesting a dampening effect on BMP pathways. Together, these results indicate a lack of translation from T2D patient kidneys to the db/db model with regards to Smad signaling pathway. It is plausible that a strong up-regulation of BMP antagonizing factors account for the lack of Smad1/5/8 activation, in spite of increased expression of several BMP members.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/patologia , Glomérulos Renais/patologia , Túbulos Renais/patologia , Proteína Smad2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Feminino , Fibrose , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fosforilação , RNA Mensageiro/metabolismo , Receptores para Leptina/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Regulação para Cima
2.
Mol Metab ; 66: 101626, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356831

RESUMO

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) ranges from steatosis to nonalcoholic steatohepatitis (NASH), which often progresses to hepatocellular carcinoma (HCC) through a largely undefined mechanism. NASH and HCC depend on inflammatory signaling, whose master regulator is the NFκB transcription factor family, activated by canonical and non-canonical pathways. METHODS: Here, we investigated non-canonical NFκB-inducing kinase (NIK/MAP3K14) in metabolic NASH, NASH to HCC transition, and DEN-induced HCC. To this end, we performed dietary and chemical interventions in mice that were analyzed via single nucleus sequencing, gene expression and histochemical methods. Ultimately, we verified our mouse results in human patient samples. RESULTS: We revealed that hepatocyte-specific NIK deficiency (NIKLKO) ameliorated metabolic NASH complications and reduced hepatocarcinogenesis, independent of its role in the NFκB pathway. Instead, hepatic NIK attenuated hepatoprotective JAK2/STAT5 signaling that is a prerequisite for NASH and NASH to HCC progression in mice and humans. CONCLUSIONS: Our data suggest NIK-mediated inhibitory JAK2 phosphorylation at serine 633 that might be amenable for future therapeutic interventions in patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição STAT5/metabolismo , Quinase Induzida por NF-kappaB
3.
Mol Cell Endocrinol ; 478: 106-114, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121202

RESUMO

ß-Cells may be a source of IL-1ß that is produced as inactive pro-IL-1ß and processed into biologically-active IL-1ß by enzymatic cleavage mediated by the NLRP1-, NLRP3- and NLRC4-inflammasomes. Little is known about the ß-cell inflammasomes. NLRP1-expression was upregulated in islet-cells from T2D-patients and by IL-1ß+IFNγ in INS-1 cells in a histone-deacetylase dependent manner. NLRP3 was downregulated by cytokines in INS-1 cells. NLRC4 was barely expressed and not regulated by cytokines. High extracellular K+ reduced cytokine-induced apoptosis and NO production and restored cytokine-inhibited accumulated insulin-secretion. Basal inflammasome expression was JNK1-3 dependent. Knock-down of the ASC interaction domain common for NLRP1 and 3 improved insulin secretion and ameliorated IL-1ß and/or glucolipotoxicity-induced cell death and reduced cytokine-induced NO-production. Broad inflammasome-inhibition, but not NLRP3-selective inhibition, protected against IL-1ß-induced INS-1 cell-toxicity. We suggest that IL-1ß causes ß-cell toxicity in part by NLRP1 mediated caspase-1-activation and maturation of IL-1ß leading to an autocrine potentiation loop.


Assuntos
Apoptose , Inflamassomos/metabolismo , Células Secretoras de Insulina/metabolismo , Estresse Fisiológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização CARD , Morte Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/farmacologia , Citoproteção/efeitos dos fármacos , Feminino , Glucose/toxicidade , Histona Desacetilases/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipídeos/toxicidade , Pessoa de Meia-Idade , Potássio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Purinérgicos P2X7/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Adulto Jovem
4.
Nephron ; 135(4): 291-306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28064277

RESUMO

BACKGROUND: The role of transforming growth factor-ß (TGF-ß) has recently gained much attention in diabetic nephropathy and kidney fibrosis. In this study, we extend this to an assessment of transcriptional regulation of the entire TGF-ß superfamily in kidneys from diabetic vs. healthy mice. In order to study the translation between mouse model and patients, we evaluated the signature of phosphorylated Sma- and Mad-related protein 2 (pSmad2), as molecular marker of TGF-ß/activin activity, in the kidneys of streptozotocin (STZ)-treated mice compared to that of type 1 diabetes (T1D) patients. METHODS: Patterns of pSmad2 were determined in kidneys from T1D patients with progressed diabetic nephropathy (DN), defined by hyperglycemia, microalbuminuria, and increased levels of serum creatinine. They were compared to changes seen in the STZ-induced DN mouse model. This was studied by immunohistochemistry (IHC) with an antibody specific for pSmad2. Diabetic mice were also characterized by pSmad1/5/8 (IHC), pSmad2/3 (flow cytometry), and TGF-ß family members including bone morphogenetic protein (BMP)-like proteins (quantitative real-time polymerase chain reaction [qPCR]). RESULTS: Renal tubules in DN patients and in STZ mice showed upregulation of pSmad2 concomitant with significantly enlarged distal tubule lumens (p < 0.0001). Renal-derived CD11b+ cells from STZ mice showed elevated pSmad2/3, while endothelial cells had reduced pSmad2/3 levels. No pSmad1/5/8 was observed in the tubule compartment of STZ-treated mice. On total kidney mRNA level, a signature favoring activation of the TGF-ß/activin pathway and inhibition of the BMP pathway was demonstrated by qPCR. CONCLUSION: Although the pre-clinical DN model lacks the features of fibrosis present in human DN, both species show induction of a local milieu favoring pSmad2 signaling, which may be useful as a disease biomarker in pre-clinical models.


Assuntos
Nefropatias Diabéticas/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Morfogenéticas Ósseas/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Pessoa de Meia-Idade , Modelos Biológicos , Fosforilação , Proteína Smad2/sangue , Proteína Smad3/sangue , Fator de Crescimento Transformador beta/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA