Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 33(9): 1956-1975, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375421

RESUMO

Anticipation, monitoring, and evaluation of the outcome of one's actions are at the core of proactive control. Individuals with lesions to OFC often demonstrate behaviors that indicate a lack of recognition or concern for the negative effects of their actions. Altered action timing has also been reported in these patients. We investigated the role of OFC in predicting and monitoring the sensory outcomes of self-paced actions. We studied patients with focal OFC lesions (n = 15) and healthy controls (n = 20) while they produced actions that infrequently evoked unexpected outcomes. Participants performed a self-paced, random generation task where they repeatedly pressed right and left buttons that were associated with specific sensory outcomes: a 1- and 2-kHz tone, respectively. Occasional unexpected action outcomes occurred (mismatch) that inverted the learned button-tone association (match). We analyzed ERPs to the expected and unexpected outcomes as well as action timing. Neither group showed post-mismatch slowing of button presses, but OFC patients had a higher number of fast button presses, indicating that they were inferior to controls at producing regularly timed actions. Mismatch trials elicited enhanced N2b-P3a responses across groups as indicated by the significant main effect of task condition. Planned within-group analyses showed, however, that patients did not have a significant condition effect, suggesting that the result of the omnibus analysis was driven primarily by the controls. Altogether, our findings indicate that monitoring of action timing and the sensory outcomes of self-paced actions as indexed by ERPs is impacted by OFC damage.


Assuntos
Potenciais Evocados , Córtex Pré-Frontal , Humanos
2.
Elife ; 132024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334469

RESUMO

Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local-global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Percepção Auditiva/fisiologia , Córtex Pré-Frontal , Córtex Auditivo/fisiologia
3.
Int J Psychophysiol ; 140: 1-7, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30894328

RESUMO

Dynamic non-luminance-mediated changes in pupil diameter have frequently been shown to be a reliable index for the level of arousal, mental effort, and activity in the locus coeruleus, the brainstem's noradrenergic arousal center. While pupillometry has most commonly been used to assess the level of arousal in particular psychological states or the level of engagement in cognitive tasks, some recent studies have found a relationship between average resting-state (i.e. baseline) pupil sizes and individuals' working memory capacity (WMC), indicating that individuals with higher WMC on average have larger pupils than individuals with relatively lower WMC. In the present study, we measured pupil size continuously in 212 participants during rest (i.e. while fixating) and estimated WMC in all participants by administering the Letter-Number Sequencing (LNS) task from WAIS-III. We were unable to replicate the relation between average pupil size and WMC. However, the novel finding was that higher WMC was associated with higher variability in resting-state pupil size. The present results are relevant for the current debate on the role of noradrenergic activity on working memory capacity.


Assuntos
Nível de Alerta/fisiologia , Memória de Curto Prazo/fisiologia , Estimulação Luminosa/métodos , Pupila/fisiologia , Descanso/fisiologia , Adulto , Feminino , Humanos , Masculino , Descanso/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA