Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 19 Suppl 14: e079861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38687559

RESUMO

BACKGROUND: The CSF amyloid to tau ratio can isolate cognitively healthy participants into normal Aß42/tau (CH-NAT) or a pathological Aß42/tau (CH-PAT) with a low or high risk of cognitive decline, respectively. We aim to determine if plasma Aß42/tau ratios can differentiate CH-NAT from CH-PAT participants. METHOD: Study participants (> 65 years of age) were recruited, and demographic, neurological, and neuropsychological data were obtained in an ongoing HMRI Brain Aging study. Overnight fasting plasma and CSF were collected within a month of examination, and the levels of Aß38, Aß40, Aß42 (MSD 6E10 kit), and total tau were quantified using the MSD electrochemiluminescence platform. Differences in fluid biomarker levels and the plasma ratios (n = 55) and CSF ratios (Aß42/Aß40, n = 41, Aß42/tau, n = 55) were determined using nonparametric student t-test and correlations using a Spearman test. RESULT: Aß40 and Aß42 levels were higher (15-18-fold, and 10-14-fold, respectively), while tau levels are 8-13-fold higher in CSF than in plasma. Plasma and CSF Aß40 were not distinct in CH-NAT compared with CH-PAT. In contrast, Aß42 levels were 30.9% lower in CH-PAT (16.3 ± 18.3 pg/ml) compared with CH-NAT plasma (23.6 ± 26.4 pg/mL) (p < 0.05). CSF Aß42 levels in CH-PAT (171.6 ± 124.6 pg/mL) were lower by 47.6% compared with CH-NAT (327.6 ± 182.6 pg/ml) (p < 0.0001). The Aß42/Aß40 ratio was significantly lower in both plasma and CSF (Table 1A). Similarly, the Aß42/tau ratio was significantly lower in plasma and CSF (Table 1B). Individually, plasma levels of Aß42 and tau did not correlate with CSF levels. However, the ratio of Aß42 to total tau in plasma significantly correlated with the CSF ratios (Spearman r = 0.36, p = 0.0071). Finally, CSF Aß42/Aß40 ratio correlated with Aß42/tau ratio for all samples, CH (n = 100) and MCI (n = 35) (Fig. 1). CONCLUSION: While not as robust as CSF ratios, plasma Aß42/Aß40 and Aß42/tau ratios can isolate cognitively healthy participants with lower risk from participants with a higher risk of cognitive decline. Thus, plasma represents a less invasive medium for the biomarker classification of aging participants.


Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Fragmentos de Peptídeos , Proteínas tau , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/sangue , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/sangue , Masculino , Feminino , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Idoso , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/sangue , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Testes Neuropsicológicos
2.
Alzheimers Dement ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479795

RESUMO

Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.

3.
Headache ; 61(3): 536-545, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33724462

RESUMO

OBJECTIVE: Our objective is to explore whether blood-cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. BACKGROUND: Reports of blood-brain barrier and blood-cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. METHODS: We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross-sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2-14 per month, and CM. Blood and CSF biomarkers were determined using antibody-based methods. RESULTS: Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF-blood quotients of albumin (Qalb : mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2-14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase-9, soluble platelet-derived growth factor receptor ß, tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-6, IL-8, IL-10, or C-reactive protein. CONCLUSIONS: The higher Qalb and Qfib ratios may indicate that the transport of these blood-derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis-generating study of migraine pathophysiology is that sVCAM-1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.


Assuntos
Barreira Hematoencefálica , Fibrinogênio/líquido cefalorraquidiano , Inflamação , Transtornos de Enxaqueca , Molécula 1 de Adesão de Célula Vascular/líquido cefalorraquidiano , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Feminino , Humanos , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/fisiopatologia
4.
Headache ; 56(4): 688-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27016121

RESUMO

OBJECTIVE: We investigated whether dietary sodium intake from respondents of a national cross-sectional nutritional study differed by history of migraine or severe headaches. BACKGROUND: Several lines of evidence support a disruption of sodium homeostasis in migraine. DESIGN: Our analysis population was 8819 adults in the 1999-2004 National Health and Nutrition Examination Survey (NHANES) with reliable data on diet and headache history. We classified respondents who reported a history of migraine or severe headaches as having probable history of migraine. To reduce the diagnostic conflict from medication overuse headache, we excluded respondents who reported taking analgesic medications. Dietary sodium intake was measured using validated estimates of self-reported total grams of daily sodium consumption and was analyzed as the residual value from the linear regression of total grams of sodium on total calories. Multivariable logistic regression that accounted for the stratified, multistage probability cluster sampling design of NHANES was used to analyze the relationship between migraine and dietary sodium. RESULTS: Odds of probable migraine history decreased with increasing dietary sodium intake (odds ratio = 0.93, 95% confidence interval = 0.87, 1.00, P = .0455). This relationship was maintained after adjusting for age, sex, and body mass index (BMI) with slightly reduced significance (P = .0505). In women, this inverse relationship was limited to those with lower BMI (P = .007), while in men the relationship did not differ by BMI. We likely excluded some migraineurs by omitting frequent analgesic users; however, a sensitivity analysis suggested little effect from this exclusion. CONCLUSIONS: This study is the first evidence of an inverse relationship between migraine and dietary sodium intake. These results are consistent with altered sodium homeostasis in migraine and our hypothesis that dietary sodium may affect brain extracellular fluid sodium concentrations and neuronal excitability.


Assuntos
Transtornos de Enxaqueca/epidemiologia , Sódio na Dieta , Adolescente , Adulto , Idoso , Estudos Transversais , Feminino , Cefaleia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Adulto Jovem
5.
J Lipid Res ; 54(10): 2884-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23868911

RESUMO

Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer's disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Glicerofosfolipídeos/líquido cefalorraquidiano , Fosfolipases A2/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Feminino , Glicerofosfolipídeos/isolamento & purificação , Humanos , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
6.
J Headache Pain ; 14: 60, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23826990

RESUMO

BACKGROUND: Migraineurs are more often afflicted by comorbid conditions than those without primary headache disorders, though the linking pathophysiological mechanism(s) is not known. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) activity in cerebrospinal fluid (CSF) increased during migraine compared to the same individual's well state. Here, we examined whether PC-PLC activity from a larger group of well-state migraineurs is related to the number of their migraine comorbidities. METHODS: In a case-control study, migraineurs were diagnosed using International Headache Society criteria, and controls had no primary headache disorder or family history of migraine. Medication use, migraine frequency, and physician-diagnosed comorbidities were recorded for all participants. Lumbar CSF was collected between the hours of 1 and 5 pm, examined immediately for cells and total protein, and stored at -80°C. PC-PLC activity in thawed CSF was measured using a fluorometric enzyme assay. Multivariable logistic regression was used to evaluate age, gender, medication use, migraine frequency, personality scores, and comorbidities as potential predictors of PC-PLC activity in CSF. RESULTS: A total of 18 migraineurs-without-aura and 17 controls participated. In a multivariable analysis, only the number of comorbidities was related to PC-PLC activity in CSF, and only in migraineurs [parameter estimate (standard error) = 1.77, p = 0.009]. CONCLUSION: PC-PLC activity in CSF increases with increasing number of comorbidities in migraine-without-aura. These data support involvement of a common lipid signaling pathway in migraine and in the comorbid conditions.


Assuntos
Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/enzimologia , Fosfolipases Tipo C/líquido cefalorraquidiano , Adulto , Idoso , Estudos de Casos e Controles , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/epidemiologia
7.
Neurobiol Aging ; 112: 87-101, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066324

RESUMO

Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Humanos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Teste de Stroop , Proteínas tau/líquido cefalorraquidiano
8.
Cephalalgia ; 31(12): 1254-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21816771

RESUMO

INTRODUCTION: Increased lumbar cerebrospinal fluid (CSF) sodium has been reported during migraine. We used ultra-high field MRI to investigate cranial sodium in a rat migraine model, and simulated the effects of extracellular sodium on neuronal excitability. METHODS: Behavioral changes in the nitroglycerin (NTG) rat migraine model were determined from von Frey hair withdrawal response and photography. Central sensitization was measured by counting cFos-immunoreactive cells in the trigeminal nucleus caudalis (TNC). Sodium was quantified in vivo by ultra-high field sodium MRI at 21 Tesla. Effects of extracellular sodium on neuronal excitability were modeled using NEURON software. RESULTS: NTG decreased von Frey withdrawal threshold (p=0.0003), decreased eyelid vertical height:width ratio (p<0.0001), increased TNC cFos stain (p<0.0001), and increased sodium between 7.5 and 17% in brain, intracranial CSF, and vitreous humor (p<0.05). Simulated neurons exposed to higher sodium have more frequent and earlier spontaneous action potentials, and corresponding earlier sodium and potassium currents. CONCLUSIONS: In the rat migraine model, sodium rises to levels that increase neuronal excitability. We propose that rising sodium in CSF surrounding trigeminal nociceptors increases their excitability and causes pain and that rising sodium in vitreous humor increases retinal neuronal excitability and causes photosensitivity.


Assuntos
Transtornos de Enxaqueca/metabolismo , Neurônios/fisiologia , Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Ratos
9.
Cephalalgia ; 31(4): 456-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20937607

RESUMO

BACKGROUND: Adrenaline, serotonin, cannabinoid and estrogen receptors are involved in migraine pathophysiology. The signaling of these receptors change phosphatidylcholine-specific phospholipase C (PC-PLC) activity, but there have been no reported PC-PLC studies in migraine. METHODS: We identified PC-PLC activity in blood and cerebrospinal fluid (CSF), and quantified it in samples from ictal and interictal migraineurs without aura and healthy controls. RESULTS: Pre-incubation with a specific PC-PLC inhibitor, D609, inhibited enzyme activity (p < .0001) and confirms its presence in CSF. PC-PLC activity was higher in the CSF from ictal migraineurs compared to controls (mean relative fluorescence unit [RFU]/µg/min [standard deviation, SD] 13.1 [3.07] vs. 9.3 [1.97]; p = .002) and, in a paired analysis, in migraineurs during ictal compared to interictal states (11.7 [1.6] vs. 7.9 [1.5]; p = .02). CSF PC-PLC activity in the ictal state correlated negatively with migraine frequency (r = -0.82). Plasma PC-PLC activity was 250-300 times less than in CSF and did not increase in migraine, implicating the brain as the source of the CSF enzyme changes. CONCLUSION: This is the first report of PC-PLC activity in CSF and of its alteration in migraine. We propose that these PC-PLC changes in CSF reflect the overall receptor fluctuations in migraine.


Assuntos
Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/enzimologia , Fosfolipases Tipo C/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/sangue , Norbornanos , Fosfatidilcolinas/líquido cefalorraquidiano , Tiocarbamatos , Tionas/farmacologia , Fosfolipases Tipo C/sangue
11.
Front Mol Neurosci ; 14: 691733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531722

RESUMO

BACKGROUND: Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. METHODS: We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. RESULTS: Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. CONCLUSIONS: Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.

12.
Int J Psychophysiol ; 170: 102-111, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666107

RESUMO

Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.


Assuntos
Doença de Alzheimer , Encéfalo , Eletroencefalografia , Frequência Cardíaca , Humanos , Projetos Piloto
13.
Metabolites ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34357356

RESUMO

The incidence of colorectal cancer (CRC) has increased in Korea, a newly-industrialized Asian country, with the dramatic increase of meat intake. To assess the risks of red or processed meat consumption on CRC, we performed a case-control study with biological monitoring of urinary1-OHP, PhIP, and MeIQx for the meat exposure; dG-C8 MeIQx and dG-C8 PhIP for HCA-induced DNA adducts; and homocysteine and C-reactive protein (CRP) in blood as well as malondialdehyde (MDA) and 31fatty acids in urine for inflammation and lipid alteration. We further analyzed global DNA methylation and expression of 15 CRC-related genes. As a result, the consumption of red or processed meat was not higher in the cases than in the controls. However, urinary MeIQx and PhIP were associated with the intake of red meat and urinary 1-OHP. MDA and multiple fatty acids were related to the exposure biomarkers. Most of the 31 fatty acids and multiple saturated fatty acids were higher in the cases than in the controls. Finally, the cases showed upregulation of PTGS2, which is related to pro-inflammatory fatty acids. This study describes indirect mechanisms of CRC via lipid alteration with a series of processes including exposure to red meat, alteration of fatty acids, and relevant gene expression.

14.
Cerebrospinal Fluid Res ; 7: 3, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20205754

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) sodium levels have been reported to rise during episodic migraine. Since migraine frequently starts in early morning or late afternoon, we hypothesized that natural sodium chronobiology may predispose susceptible persons when extracellular CSF sodium increases. Since no mammalian brain sodium rhythms are known, we designed a study of healthy humans to test if cation rhythms exist in CSF. METHODS: Lumbar CSF was collected every ten minutes at 0.1 mL/min for 24 h from six healthy participants. CSF sodium and potassium concentrations were measured by ion chromatography, total protein by fluorescent spectrometry, and osmolarity by freezing point depression. We analyzed cation and protein distributions over the 24 h period and spectral and permutation tests to identify significant rhythms. We applied the False Discovery Rate method to adjust significance levels for multiple tests and Spearman correlations to compare sodium fluctuations with potassium, protein, and osmolarity. RESULTS: The distribution of sodium varied much more than potassium, and there were statistically significant rhythms at 12 and 1.65 h periods. Curve fitting to the average time course of the mean sodium of all six subjects revealed the lowest sodium levels at 03.20 h and highest at 08.00 h, a second nadir at 09.50 h and a second peak at 18.10 h. Sodium levels were not correlated with potassium or protein concentration, or with osmolarity. CONCLUSION: These CSF rhythms are the first reports of sodium chronobiology in the human nervous system. The results are consistent with our hypothesis that rising levels of extracellular sodium may contribute to the timing of migraine onset. The physiological importance of sodium in the nervous system suggests that these rhythms may have additional repercussions on ultradian functions.

15.
Headache ; 50(3): 459-78, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19845787

RESUMO

BACKGROUND: Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known. OBJECTIVE: Analyze biochemical pathways that influence [Na(+)](csf) to identify mechanisms that are consistent with migraine. METHOD: We reviewed sodium physiology and biochemistry publications for links to migraine and pain. RESULTS: Increased capillary endothelial cell (CEC) Na(+), K(+), -ATPase transporter (NKAT) activity is probably the primary cause of increased [Na(+)](csf). Physiological fluctuations of all NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter brain extracellular sodium ([Na(+)](e)) and potassium ([K(+)](e)). CONCLUSIONS: We propose a theoretical mechanism for aura and migraine when NKAT activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K(+)](e), facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper limit elevates [Na(+)](e), increases neuronal excitability, and causes migraine; (3) migraine-without-aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-induced apoptosis or cerebral infarction.


Assuntos
Artérias Cerebrais/metabolismo , Artérias Cerebrais/fisiopatologia , Células Endoteliais/metabolismo , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Líquido Cefalorraquidiano/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Humanos , Transtornos de Enxaqueca/líquido cefalorraquidiano , Potássio/análise , Potássio/líquido cefalorraquidiano , Sódio/análise , Sódio/líquido cefalorraquidiano
16.
Front Physiol ; 11: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581851

RESUMO

Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.

17.
Front Aging Neurosci ; 12: 574214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192465

RESUMO

Research shows that gamma activity changes in Alzheimer's disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30-50 Hz) and high gamma (50-80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: normal amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect size (Cohen's d) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region (p = 0.045, Cohen's d = -0.96), and high gamma is lower over the parietal region (p = 0.035, Cohen's d = -1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen's d = -0.51∼-1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs (r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs (r = -0.70∼-0.66, p = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.

18.
Front Neurosci ; 14: 611393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390893

RESUMO

Insight into lipids' roles in Alzheimer's disease (AD) pathophysiology is limited because brain membrane lipids have not been characterized in cognitively healthy (CH) individuals. Since age is a significant risk factor of AD, we hypothesize that aging renders the amyloid precursor protein (APP) more susceptible to abnormal processing because of deteriorating membrane lipids. To reflect brain membranes, we studied their lipid components in cerebrospinal fluid (CSF) and brain-derived CSF nanoparticle membranes. Based on CSF Aß42/Tau levels established biomarkers of AD, we define a subset of CH participants with normal Aß42/Tau (CH-NAT) and another group with abnormal or pathological Aß42/Tau (CH-PAT). We report that glycerophospholipids are differentially metabolized in the CSF supernatant fluid and nanoparticle membrane fractions from CH-NAT, CH-PAT, and AD participants. Phosphatidylcholine molecular species from the supernatant fraction of CH-PAT were higher than in the CH-NAT and AD participants. Sphingomyelin levels in the supernatant fraction were lower in the CH-PAT and AD than in the CH-NAT group. The decrease in sphingomyelin corresponded with an increase in ceramide and dihydroceramide and an increase in the ceramide to sphingomyelin ratio in AD. In contrast to the supernatant fraction, sphingomyelin is higher in the nanoparticle fraction from the CH-PAT group, accompanied by lower ceramide and dihydroceramide and a decrease in the ratio of ceramide to sphingomyelin in CH-PAT compared with CH-NAT. On investigating the mechanism for the lipid changes in AD, we observed that phospholipase A2 (PLA2) activity was higher in the AD group than the CH groups. Paradoxically, acid and neutral sphingomyelinase (SMase) activities were lower in AD compared to the CH groups. Considering external influences on lipids, the clinical groups did not differ in their fasting blood lipids or dietary lipids, consistent with the CSF lipid changes originating from brain pathophysiology. The lipid accumulation in a prodromal AD biomarker positive stage identifies perturbation of lipid metabolism and disturbances in APP/Amyloid beta (Aß) as early events in AD pathophysiology. Our results identify increased lipid turnover in CH participants with AD biomarkers, switching to a predominantly lipolytic state in dementia. This knowledge may be useful for targeting and testing new AD treatments.

19.
Front Physiol ; 11: 83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116789

RESUMO

Alzheimer's disease (AD) pathology is characterized by an early and prolonged decrease in the amyloid peptide (Aß) levels concomitant with a later increase in phospho-tau concentrations in cerebrospinal fluid (CSF). We propose that changes in lipid metabolism can contribute to the abnormal processing of Aß42 in AD. Our aim was to determine if polyunsaturated fatty acid (PUFA) metabolism can differentiate pre-symptomatic AD from normal aging and symptomatic AD. Using neuropsychology measures and Aß42/T-tau in cerebrospinal fluid (CSF), we classify three groups of elderly study participants: cognitively healthy with normal Aß42/T-tau (CH-NAT), cognitively healthy with pathological Aß42/T-tau (CH-PAT), and AD individuals. We determined the size distribution and the concentration of CSF particles using light scattering and quantified PUFA composition in the nanoparticulate (NP) fraction, supernatant fluid (SF), and unesterified PUFA levels using gas chromatography combined with mass spectrometry. Four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3) were enriched in NP of AD compared with CH-NAT. C20:3n-3 levels were higher in the NP fraction from AD compared with CH-PAT. When normalized to the number of NPs in CSF, PUFA levels were significantly higher in CH-NAT and CH-PAT compared with AD. In the SF fractions, only the levels of docosahexaenoic acid (DHA, C22:6n-3) differentiated all three clinical groups. Unesterified DHA was also higher in CH-NAT compared with the other clinical groups. Our studies also show that NP PUFAs in CH participants negatively correlate with CSF Aß42 while C20:4n-6, DHA, and n-3 PUFAs in the SF fraction positively correlate with T-tau. The profile of PUFAs in different CSF fractions that correlate with Aß42 or with T-tau are different for CH-NAT compared with CH-PAT. These studies show that PUFA metabolism is associated with amyloid and tau processing. Importantly, higher PUFA levels in the cognitively healthy study participants with abnormal Aß42/T-tau suggest that PUFA enhances the cognitive resilience of the pre-symptomatic AD population. We propose that interventions that prevent PUFA depletion in the brain may prevent AD pathology by stabilizing Aß42 and tau metabolism. Further studies to determine changes in PUFA composition during the progression from pre-symptomatic to AD should reveal novel biomarkers and potential preventive approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA