Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(2): 556-571, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34719793

RESUMO

Cadmium (Cd2+ ) is highly harmful to plant growth. Although Cd2+ induces programmed cell death (PCD) in plant cells, Cd2+ stress in whole plants during later developmental stages and the mechanism underlying Cd2+ -mediated toxicity are poorly understood. Here, we showed that Cd2+ limits plant growth, causes intense redness in leaf vein, leaf yellowing, and chlorosis during the R1 reproductive stage of soybean (Glycine max). These symptoms were associated with Cd2+ -induced PCD, as Cd2+ -stressed soybean leaves displayed decreased number of nuclei, enhanced cell death, DNA damage, and caspase 1 activity compared to unstressed leaves. Accordingly, Cd2+ -induced NRPs, GmNAC81, GmNAC30 and VPE, the DCD/NRP-mediated cell death signalling components, which execute PCD via caspase 1-like VPE activity. Furthermore, overexpression of the positive regulator of this cell death signalling GmNAC81 enhanced sensitivity to Cd2+ stress and intensified the hallmarks of Cd2+ -mediated PCD. GmNAC81 overexpression enhanced Cd2+ -induced H2 O2 production, cell death, DNA damage, and caspase-1-like VPE expression. Conversely, BiP overexpression negatively regulated the NRPs/GmNACs/VPE signalling module, conferred tolerance to Cd2+ stress and reduced Cd2+ -mediated cell death. Collectively, our data indicate that Cd2+ induces PCD in plants via activation of the NRP/GmNAC/VPE regulatory circuit that links developmentally and stress-induced cell death.


Assuntos
Apoptose , Cádmio/efeitos adversos , Glycine max/efeitos dos fármacos , Células Vegetais/efeitos dos fármacos , Folhas de Planta/fisiologia , Células Vegetais/fisiologia , Glycine max/fisiologia
2.
Proc Natl Acad Sci U S A ; 116(1): 313-318, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545913

RESUMO

Acidic soils, where aluminum (Al) toxicity is a major agricultural constraint, are globally widespread and are prevalent in developing countries. In sorghum, the root citrate transporter SbMATE confers Al tolerance by protecting root apices from toxic Al3+, but can exhibit reduced expression when introgressed into different lines. We show that allele-specific SbMATE transactivation occurs and is caused by factors located away from SbMATE Using expression-QTL mapping and expression genome-wide association mapping, we establish that SbMATE transcription is controlled in a bipartite fashion, primarily in cis but also in trans Multiallelic promoter transactivation and ChIP analyses demonstrated that intermolecular effects on SbMATE expression arise from a WRKY and a zinc finger-DHHC transcription factor (TF) that bind to and trans-activate the SbMATE promoter. A haplotype analysis in sorghum RILs indicates that the TFs influence SbMATE expression and Al tolerance. Variation in SbMATE expression likely results from changes in tandemly repeated cis sequences flanking a transposable element (a miniature inverted repeat transposable element) insertion in the SbMATE promoter, which are recognized by the Al3+-responsive TFs. According to our model, repeat expansion in Al-tolerant genotypes increases TF recruitment and, hence, SbMATE expression, which is, in turn, lower in Al-sensitive genetic backgrounds as a result of lower TF expression and fewer binding sites. We thus show that even dominant cis regulation of an agronomically important gene can be subjected to precise intermolecular fine-tuning. These concerted cis/trans interactions, which allow the plant to sense and respond to environmental cues, such as Al3+ toxicity, can now be used to increase yields and food security on acidic soils.


Assuntos
Alumínio/toxicidade , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Proteínas de Transporte de Ânions/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Sorghum/genética , Sorghum/metabolismo , Sequências de Repetição em Tandem/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293031

RESUMO

Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.


Assuntos
Arabidopsis , Proteínas de Plantas , Animais , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plastocianina/genética , Plastocianina/metabolismo , Teorema de Bayes , Leucina/metabolismo , Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Aprendizado de Máquina , Hidrolases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Lipídeos , Filogenia
4.
Nature ; 520(7549): 679-82, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25707794

RESUMO

Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus-plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/virologia , Begomovirus/imunologia , Imunidade Inata , Imunidade Vegetal , Biossíntese de Proteínas/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Tolerância Imunológica , Ligação Proteica , Biossíntese de Proteínas/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo
5.
BMC Biotechnol ; 19(1): 79, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747926

RESUMO

BACKGROUND: Drought is one of the most harmful abiotic stresses for plants, leading to reduced productivity of several economically important crops and, consequently, considerable losses in the agricultural sector. When plants are exposed to stressful conditions, such as drought and high salinity, they modulate the expression of genes that lead to developmental, biochemical, and physiological changes, which help to overcome the deleterious effects of adverse circumstances. Thus, the search for new specific gene promoter sequences has proved to be a powerful biotechnological strategy to control the expression of key genes involved in water deprivation or multiple stress responses. RESULTS: This study aimed to identify and characterize the GmRD26 promoter (pGmRD26), which is involved in the regulation of plant responses to drought stress. The expression profile of the GmRD26 gene was investigated by qRT-PCR under normal and stress conditions in Williams 82, BR16 and Embrapa48 soybean-cultivars. Our data confirm that GmRD26 is induced under water deficit with different induction folds between analyzed cultivars, which display different genetic background and physiological behaviour under drought. The characterization of the GmRD26 promoter was performed under simulated stress conditions with abscisic acid (ABA), polyethylene glycol (PEG) and drought (air dry) on A. thaliana plants containing the complete construct of pGmRD26::GUS (2.054 bp) and two promoter modules, pGmRD26A::GUS (909 pb) and pGmRD26B::GUS (435 bp), controlling the expression of the ß-glucuronidase (uidA) gene. Analysis of GUS activity has demonstrated that pGmRD26 and pGmRD26A induce strong reporter gene expression, as the pAtRD29 positive control promoter under ABA and PEG treatment. CONCLUSIONS: The full-length promoter pGmRD26 and the pGmRD26A module provides an improved uidA transcription capacity when compared with the other promoter module, especially in response to polyethylene glycol and drought treatments. These data indicate that pGmRD26A may become a promising biotechnological asset with potential use in the development of modified drought-tolerant plants or other plants designed for stress responses.


Assuntos
Ácido Abscísico/farmacologia , Glycine max/genética , Biotecnologia/métodos , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Glycine max/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
6.
BMC Bioinformatics ; 18(1): 431, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28964254

RESUMO

BACKGROUND: Geminiviruses infect a broad range of cultivated and non-cultivated plants, causing significant economic losses worldwide. The studies of the diversity of species, taxonomy, mechanisms of evolution, geographic distribution, and mechanisms of interaction of these pathogens with the host have greatly increased in recent years. Furthermore, the use of rolling circle amplification (RCA) and advanced metagenomics approaches have enabled the elucidation of viromes and the identification of many viral agents in a large number of plant species. As a result, determining the nomenclature and taxonomically classifying geminiviruses turned into complex tasks. In addition, the gene responsible for viral replication (particularly, the viruses belonging to the genus Mastrevirus) may be spliced due to the use of the transcriptional/splicing machinery in the host cells. However, the current tools have limitations concerning the identification of introns. RESULTS: This study proposes a new method, designated Fangorn Forest (F2), based on machine learning approaches to classify genera using an ab initio approach, i.e., using only the genomic sequence, as well as to predict and classify genes in the family Geminiviridae. In this investigation, nine genera of the family Geminiviridae and their related satellite DNAs were selected. We obtained two training sets, one for genus classification, containing attributes extracted from the complete genome of geminiviruses, while the other was made up to classify geminivirus genes, containing attributes extracted from ORFs taken from the complete genomes cited above. Three ML algorithms were applied on those datasets to build the predictive models: support vector machines, using the sequential minimal optimization training approach, random forest (RF), and multilayer perceptron. RF demonstrated a very high predictive power, achieving 0.966, 0.964, and 0.995 of precision, recall, and area under the curve (AUC), respectively, for genus classification. For gene classification, RF could reach 0.983, 0.983, and 0.998 of precision, recall, and AUC, respectively. CONCLUSIONS: Therefore, Fangorn Forest is proven to be an efficient method for classifying genera of the family Geminiviridae with high precision and effective gene prediction and classification. The method is freely accessible at www.geminivirus.org:8080/geminivirusdw/discoveryGeminivirus.jsp .


Assuntos
Geminiviridae/genética , Aprendizado de Máquina , Área Sob a Curva , DNA Satélite/classificação , DNA Satélite/genética , Geminiviridae/classificação , Internet , Fases de Leitura Aberta/genética , Plantas/virologia , Curva ROC , Interface Usuário-Computador
7.
BMC Bioinformatics ; 18(1): 240, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476106

RESUMO

BACKGROUND: The Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. RESULTS: Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. CONCLUSIONS: The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Geminiviridae/genética , Aprendizado de Máquina , Algoritmos , DNA de Cadeia Simples/genética , DNA Viral/genética , Fases de Leitura Aberta/genética , Filogenia , Plantas/virologia
8.
Ann Bot ; 119(5): 711-723, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27780814

RESUMO

BACKGROUND: Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. SCOPE AND CONCLUSION: This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement.


Assuntos
Doenças das Plantas/imunologia , Imunidade Vegetal , Vírus de Plantas/fisiologia , Transdução de Sinais , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia
9.
Bioessays ; 37(11): 1236-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335701

RESUMO

NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Arabidopsis/virologia , Begomovirus/imunologia , Imunidade Vegetal/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Fosforilação , Biossíntese de Proteínas/genética , Transporte Proteico/imunologia , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Glycine max/imunologia , Glycine max/virologia
10.
Genet Mol Biol ; 40(1 suppl 1): 292-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199446

RESUMO

Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP)-Interacting Kinase1), is discussed in this review.

11.
BMC Plant Biol ; 16(1): 156, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405371

RESUMO

BACKGROUND: The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. RESULTS: Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. CONCLUSION: Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Glycine max/química , Glycine max/genética
12.
Proc Natl Acad Sci U S A ; 110(48): 19627-32, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24145438

RESUMO

Prolonged endoplasmic reticulum and osmotic stress synergistically activate the stress-induced N-rich protein-mediated signaling that transduces a cell death signal by inducing GmNAC81 (GmNAC6) in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC81. We discovered another member of the NAC (NAM-ATAF1,2-CUC2) family, GmNAC30, which binds to GmNAC81 in the nucleus of plant cells to coordinately regulate common target promoters that harbor the core cis-regulatory element TGTG[TGC]. We found that GmNAC81 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to enhance the transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for the full regulation of gene expression. Accordingly, GmNAC81 and GmNAC30 display overlapping expression profiles in response to multiple environmental and developmental stimuli. Consistent with a role in PCD, GmNAC81 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC81/GmNAC30 binding site is located in the promoter of the caspase-1-like vacuolar processing enzyme (VPE) gene, which is involved in PCD in plants. We demonstrated that the expression of GmNAC81 and GmNAC30 fully transactivates the VPE gene in soybean protoplasts and that this transactivation was associated with an increase in caspase-1-like activity. Collectively, our results indicate that the stress-induced GmNAC30 cooperates with GmNAC81 to activate PCD through the induction of the cell death executioner VPE.


Assuntos
Morte Celular/fisiologia , Cisteína Endopeptidases/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/fisiologia , Osmorregulação/fisiologia , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Glycine max/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
BMC Genomics ; 16: 783, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26466891

RESUMO

BACKGROUND: Despite the relevance of the eukaryotic endoplasmic reticulum (ER)-stress response as an integrator of multiple stress signals into an adaptive response, knowledge about these ER-mediated cytoprotective pathways in soybean (Glycine max) is lacking. Here, we searched for genes involved in the highly conserved unfolded protein response (UPR) and ER stress-induced plant-specific cell death signaling pathways in the soybean genome. METHODS: Previously characterized Arabidopsis UPR genes were used as prototypes for the identification of the soybean orthologs and the in silico assembly of the UPR in soybean, using eggNOG v4.0 software. Functional studies were also conducted by analyzing the transcriptional activity of soybean UPR transducers. RESULTS: As a result of this search, we have provided a complete profile of soybean UPR genes with significant predicted protein similarities to A. thaliana UPR-associated proteins. Both arms of the plant UPR were further examined functionally, and evidence is presented that the soybean counterparts are true orthologs of previously characterized UPR transducers in Arabidopsis. The bZIP17/bZI28 orthologs (GmbZIP37 and GmbZIP38) and ZIP60 ortholog (GmbZIP68) from soybean have similar structural organizations as their Arabidopsis counterparts, were induced by ER stress and activated an ERSE- and UPRE-containing BiP promoter. Furthermore, the transcript of the putative substrate of GmIREs, GmbZIP68, harbors a canonical site for IRE1 endonuclease activity and was efficiently spliced under ER stress conditions. In a reverse approach, we also examined the Arabidopsis genome for components of a previously characterized ER stress-induced cell death signaling response in soybean. With the exception of GmERD15, which apparently does not possess an Arabidopsis ortholog, the Arabidopsis genome harbors conserved GmNRP, GmNAC81, GmNAC30 and GmVPE sequences that share significant structural and sequence similarities with their soybean counterparts. These results suggest that the NRP/GmNAC81 + GmNAC30/VPE regulatory circuit may transduce cell death signals in plant species other than soybean. CONCLUSIONS: Our in silico analyses, along with current and previous functional data, permitted generation of a comprehensive overview of the ER stress response in soybean as a framework for functional prediction of ER stress signaling components and their possible connections with multiple stress responses.


Assuntos
Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/genética , Genoma de Planta , Glycine max/genética , Arabidopsis/genética , Simulação por Computador , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Resposta a Proteínas não Dobradas/genética
14.
Plant Biotechnol J ; 13(9): 1300-1311, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25688422

RESUMO

Begomovirus-associated epidemics currently threaten tomato production worldwide due to the emergence of highly pathogenic virus species and the proliferation of a whitefly B biotype vector that is adapted to tomato. To generate an efficient defence against begomovirus, we modulated the activity of the immune defence receptor nuclear shuttle protein (NSP)-interacting kinase (NIK) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Mutation of T474 within the kinase activation loop promoted the constitutive activation of NIK-mediated defences, resulting in the down-regulation of translation-related genes and the suppression of global translation. Consistent with these findings, transgenic lines harbouring an activating mutation (T474D) were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. This phenotype was associated with reduced loading of coat protein viral mRNA in actively translating polysomes, lower infection efficiency and reduced accumulation of viral DNA in systemic leaves. Our results also add some relevant insights into the mechanism underlying the NIK-mediated defence. We observed that the mock-inoculated T474D-overexpressing lines showed a constitutively infected wild-type transcriptome, indicating that the activation of the NIK-mediated signalling pathway triggers a typical response to begomovirus infection. In addition, the gain-of-function mutant T474D could sustain an activated NIK-mediated antiviral response in the absence of the virus, further confirming that phosphorylation of Thr-474 is the crucial event that leads to the activation of the kinase.


Assuntos
Begomovirus/fisiologia , Doenças das Plantas/virologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Solanum lycopersicum/virologia , Genes de Plantas , Solanum lycopersicum/fisiologia , Mutação , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Proteínas Virais/metabolismo
15.
Plant Physiol ; 164(2): 654-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24319082

RESUMO

The binding protein (BiP) has been demonstrated to participate in innate immunity and attenuate endoplasmic reticulum- and osmotic stress-induced cell death. Here, we employed transgenic plants with manipulated levels of BiP to assess whether BiP also controlled developmental and hypersensitive programmed cell death (PCD). Under normal conditions, the BiP-induced transcriptome revealed a robust down-regulation of developmental PCD genes and an up-regulation of the genes involved in hypersensitive PCD triggered by nonhost-pathogen interactions. Accordingly, the BiP-overexpressing line displayed delayed leaf senescence under normal conditions and accelerated hypersensitive response triggered by Pseudomonas syringae pv tomato in soybean (Glycine max) and tobacco (Nicotiana tabacum), as monitored by measuring hallmarks of PCD in plants. The BiP-mediated delay of leaf senescence correlated with the attenuation of N-rich protein (NRP)-mediated cell death signaling and the inhibition of the senescence-associated activation of the unfolded protein response (UPR). By contrast, under biological activation of salicylic acid (SA) signaling and hypersensitive PCD, BiP overexpression further induced NRP-mediated cell death signaling and antagonistically inhibited the UPR. Thus, the SA-mediated induction of NRP cell death signaling occurs via a pathway distinct from UPR. Our data indicate that during the hypersensitive PCD, BiP positively regulates the NRP cell death signaling through a yet undefined mechanism that is activated by SA signaling and related to ER functioning. By contrast, BiP's negative regulation of leaf senescence may be linked to its capacity to attenuate the UPR activation and NRP cell death signaling. Therefore, BiP can function either as a negative or positive modulator of PCD events.


Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/citologia , Glycine max/genética , Proteínas de Choque Térmico/genética , Proteínas de Plantas/metabolismo , Caspase 1/metabolismo , Morte Celular , Chaperona BiP do Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Choque Térmico/metabolismo , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Pseudomonas syringae/fisiologia , Transdução de Sinais , Glycine max/imunologia , Glycine max/microbiologia , Fatores de Tempo , Resposta a Proteínas não Dobradas/genética
16.
Curr Opin Plant Biol ; 77: 102447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37690927

RESUMO

SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) and NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASES (NIKs) belong to superfamily II of leucine-rich repeat receptor-like kinases, which share cytosolic kinase conservation and a similar ectodomain configuration. SERKs have been extensively demonstrated to function as coreceptors of receptor-like kinases, which sense biotic or developmental signals to initiate specific responses. NIKs, on the other hand, have emerged as downstream components in signaling cascades, not functioning as coreceptors but rather serving as hubs that converge information from both biotic and abiotic signals, resulting in a unified response. Like SERKs, NIKs play a crucial role as information spreaders in plant cells, forming hubs of high centrality. However, unlike SERKs, which function as coreceptors and assemble paired receptor-specific responses, NIKs employ a shared signaling circuit to transduce diverse biotic and abiotic signals into the same physiological response. Therefore, this review highlights the concept of signaling hubs that differ from coreceptors in signaling pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Quinases/metabolismo , Proteínas Nucleares/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
17.
Arch Virol ; 158(2): 457-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23053525

RESUMO

A novel soybean-infecting begomovirus from Brazil was identified in Jaíba, in the state of Minas Gerais, and molecularly characterized. By using rolling-circle amplification-based cloning of viral DNAs, three DNA-A variants and a cognate DNA-B were isolated from infected samples. The DNA variants share more than 98 % sequence identity but have less than 89 % identity to other reported begomovirus, the limit for demarcation of new species. In a phylogenetic analysis, both DNA-A and DNA-B clustered with other Brazilian begomoviruses. Infectious cloned DNA-A and DNA-B components induced distinct symptoms in Solanaceae and Fabaceae species by biolistic inoculation. In soybean, the virus induced mild symptoms, i.e., chlorotic spots on the leaves, from which the name soybean chlorotic spot virus (SoCSV) was proposed. The most severe symptoms were displayed by common beans, which exhibited leaf distortion, blistering, interveinal chlorosis, mosaic and golden mosaic. The possibility that SoCSV may become a threat to bean production in Brazil is discussed.


Assuntos
Begomovirus/classificação , Begomovirus/isolamento & purificação , DNA Viral/genética , Glycine max/virologia , Begomovirus/genética , Brasil , Análise por Conglomerados , DNA Viral/química , Fabaceae/virologia , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
18.
Viruses ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515277

RESUMO

Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.


Assuntos
Begomovirus , Begomovirus/genética , DNA Viral/genética , Proteínas Virais/genética , Proteínas de Transporte/metabolismo , Mecanismos de Defesa , Doenças das Plantas
19.
J Biol Chem ; 286(22): 20020-30, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21482825

RESUMO

As in all other eukaryotic organisms, endoplasmic reticulum (ER) stress triggers the evolutionarily conserved unfolded protein response in soybean, but it also communicates with other adaptive signaling responses, such as osmotic stress-induced and ER stress-induced programmed cell death. These two signaling pathways converge at the level of gene transcription to activate an integrated cascade that is mediated by N-rich proteins (NRPs). Here, we describe a novel transcription factor, GmERD15 (Glycine max Early Responsive to Dehydration 15), which is induced by ER stress and osmotic stress to activate the expression of NRP genes. GmERD15 was isolated because of its capacity to stably associate with the NRP-B promoter in yeast. It specifically binds to a 187-bp fragment of the NRP-B promoter in vitro and activates the transcription of a reporter gene in yeast. Furthermore, GmERD15 was found in both the cytoplasm and the nucleus, and a ChIP assay revealed that it binds to the NRP-B promoter in vivo. Expression of GmERD15 in soybean protoplasts activated the NRP-B promoter and induced expression of the NRP-B gene. Collectively, these results support the interpretation that GmERD15 functions as an upstream component of stress-induced NRP-B-mediated signaling to connect stress in the ER to an osmotic stress-induced cell death signal.


Assuntos
Retículo Endoplasmático/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Morte Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Retículo Endoplasmático/genética , Pressão Osmótica , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glycine max/genética , Fatores de Transcrição/genética
20.
BMC Plant Biol ; 12: 229, 2012 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-23198823

RESUMO

BACKGROUND: Receptor-like kinases (RLKs) play key roles during development and in responses to the environment. Despite the relevance of the RLK family and the completion of the tomato genome sequencing, the tomato RLK family has not yet been characterized, and a framework for functional predictions of the members of the family is lacking. RESULTS: To generate a complete list of all the members of the tomato RLK family, we performed a phylogenetic analysis using the Arabidopsis family as a template. A total of 647 RLKs were identified in the tomato genome, which were organized into the same subfamily clades as Arabidopsis RLKs. Only eight of 58 RLK subfamilies exhibited specific expansion/reduction compared to their Arabidopsis counterparts. We also characterized the LRRII-RLK family by phylogeny, genomic analysis, expression profile and interaction with the virulence factor from begomoviruses, the nuclear shuttle protein (NSP). The LRRII subfamily members from tomato and Arabidopsis were highly conserved in both sequence and structure. Nevertheless, the majority of the orthologous pairs did not display similar conservation in the gene expression profile, indicating that these orthologs may have diverged in function after speciation. Based on the fact that members of the Arabidopsis LRRII subfamily (AtNIK1, AtNIK2 and AtNIK3) interact with the begomovirus nuclear shuttle protein (NSP), we examined whether the tomato orthologs of NIK, BAK1 and NsAK genes interact with NSP of Tomato Yellow Spot Virus (ToYSV). The tomato orthologs of NSP interactors, SlNIKs and SlNsAK, interacted specifically with NSP in yeast and displayed an expression pattern consistent with the pattern of geminivirus infection. In addition to suggesting a functional analogy between these phylogenetically classified orthologs, these results expand our previous observation that NSP-NIK interactions are neither virus-specific nor host-specific. CONCLUSIONS: The tomato RLK superfamily is made-up of 647 proteins that form a monophyletic tree with the Arabidopsis RLKs and is divided into 58 subfamilies. Few subfamilies have undergone expansion/reduction, and only six proteins were lineage-specific. Therefore, the tomato RLK family shares functional and structural conservation with Arabidopsis. For the LRRII-RLK members SlNIK1 and SlNIK3, we observed functions analogous to those of their Arabidopsis counterparts with respect to protein-protein interactions and similar expression profiles, which predominated in tissues that support high efficiency of begomovirus infection. Therefore, NIK-mediated antiviral signaling is also likely to operate in tomato, suggesting that tomato NIKs may be good targets for engineering resistance against tomato-infecting begomoviruses.


Assuntos
Begomovirus/patogenicidade , Família Multigênica , Filogenia , Proteínas Serina-Treonina Quinases/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência Conservada , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genômica , Solanum lycopersicum/enzimologia , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/fisiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA