Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Semin Cancer Biol ; 86(Pt 2): 976-989, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33737109

RESUMO

The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fungos/química , Fungos/metabolismo , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Imunoterapia
2.
Cell Biochem Funct ; 40(4): 403-416, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35485606

RESUMO

Ubiquitin-proteasome system (UPS) and autophagy are interconnected proteolysis pathways implicated in doxorubicin resistance of breast cancer cells. Following anticancer treatments, autophagy either plays a cytoprotective role or augments treatment-induced cytotoxicity. However, the role of autophagy in breast cancer cells cotreated with doxorubicin and ixazomib remains unclear. The expression of autophagy proteins (LC3A/B and Beclin-1) and UPS protein (ubiquitin) in MDA-MB-231 and MCF-7 cells following doxorubicin, ixazomib, and/or hydroxychloroquine were determined by western blot. The combinatorial effects and combination index (CI) of triple-combination were determined by cell viability assay and CompuSyn software, respectively. Doxorubicin and ixazomib cotreatment increased Beclin-1 (3.8- and 3.5-fold) and LC3-II expression (13.5- and 1.9-fold) in MDA-MB-231 and MCF-7 cells, respectively. Adding lysosomal inhibitor hydroxychloroquine to doxorubicin and ixazomib further increased LC3-II expression to 45.0- and 16.5-fold in MDA-MB-231 and MCF-7 cells, respectively, confirming autophagy induction. The triple-combination synergistically inhibited cell growth, achieving CI 0.672 and 0.157 in MDA-MB-231 and MCF-7 cells, respectively. The triple-combination also induced ubiquitinated proteins accumulation (2.5-fold and 3.0-fold) in MDA-MB-231 and MCF-7 cells, respectively. These results suggest that the autophagy induced by doxorubicin and ixazomib cotreatment serves cytoprotective role in breast cancer cells. Simultaneous UPS and autophagy inhibition synergistically enhanced doxorubicin-mediated cytotoxicity.


Assuntos
Neoplasias da Mama , Complexo de Endopeptidases do Proteassoma , Apoptose , Autofagia , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Doxorrubicina/farmacologia , Feminino , Humanos , Hidroxicloroquina/farmacologia , Ubiquitinas
3.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743181

RESUMO

Facial aesthetics involve the application of non-invasive or minimally invasive techniques to improve facial appearance. Currently, extracellular vesicles (EVs) are attracting much interest as nanocarriers in facial aesthetics due to their lipid bilayer membrane, nanosized dimensions, biological origin, intercellular communication ability, and capability to modulate the molecular activities of recipient cells that play important roles in skin rejuvenation. Therefore, EVs have been suggested to have therapeutic potential in improving skin conditions, and these highlighted the potential to develop EV-based cosmetic products. This review summarizes EVs' latest research, reporting applications in facial aesthetics, including scar removal, facial rejuvenation, anti-aging, and anti-pigmentation. This review also discussed the advanced delivery strategy of EVs, the therapeutic potential of plant EVs, and clinical studies using EVs to improve skin conditions. In summary, EV therapy reduces scarring, rejuvenates aging skin, and reduces pigmentation. These observations warrant the development of EV-based cosmetic products. However, more efforts are needed to establish a large-scale EV production platform that can consistently produce functional EVs and understand EVs' underlying mechanism of action to improve their efficacy.


Assuntos
Vesículas Extracelulares , Comunicação Celular , Estética
4.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745063

RESUMO

The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.


Assuntos
Vesículas Extracelulares , Animais , Comunicação Celular , Portadores de Fármacos , Mamíferos
6.
Biometals ; 31(4): 505-515, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29623473

RESUMO

Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/química , Cobre/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Células MCF-7 , Tiocarbamatos/química , Tiocarbamatos/farmacologia
7.
BMC Complement Altern Med ; 16: 354, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609190

RESUMO

BACKGROUND: Several compounds isolated from Dryobalanops have been reported to exhibit cytotoxic effects to several cancer cell lines. This study investigated the cytotoxic effects, cell cycle arrest and mode of cell death in ampelopsin E-treated triple negative cells, MDA-MB-231. METHODS: Cytotoxicity of ampelopsin E, ampelopsin F, flexuosol A, laevifonol, Malaysianol A, Malaysianol D and nepalensinol E isolated from Dryobalanops towards human colon cancer HT-29, breast cancer MDA-MB-231 and MCF-7, alveolar carcinoma HeLa and mouse embryonic fibroblast NIH/3 T3 cells were determined by MTT assay. The cells were treated with the compounds (0.94-30 µM) for 72 h. The mode of cell death was evaluated by using an inverted light microscope and annexin V/PI analysis. Cell cycle analysis was performed by using a flow cytometer. RESULTS: Data showed that ampelopsin E was most cytotoxic toward MDA-MB-231 with the IC50 (50 % inhibition of cell viability compared to control) of 14.5 ± 0.71 µM at 72 h. Cell shrinkage, membrane blebbing and formation apoptotic bodies characteristic of apoptosis were observed following treatment with ampelopsin E. The annexin V/PI flow cytometric analysis further confirmed that ampelopsin E induced apoptosis in MDA-MB-231 cells. Cell cycle analysis revealed that ampelopsin E induced G2/M phase cell cycle arrest in the cells. CONCLUSION: Ampelopsin E induced apoptosis and cell cycle arrest in MDA-MB-231 cells. Therefore, ampelopsin E has the potential to be developed into an anticancer agent for treatment of triple negative breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dipterocarpaceae/química , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Flavonoides/química , Humanos , Extratos Vegetais/química , Neoplasias de Mama Triplo Negativas/metabolismo
8.
BMC Complement Altern Med ; 14: 55, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24524627

RESUMO

BACKGROUND: Breast cancer is one of the most dreading types of cancer among women. Herbal medicine has becoming a potential source of treatment for breast cancer. Herbal plant Dillenia suffruticosa (Griff) Martelli under the family Dilleniaceae has been traditionally used to treat cancerous growth. In this study, the anticancer effect of ethyl acetate extract of D. suffruticosa (EADs) was examined on human breast adenocarcinoma cell line MCF-7 and the molecular pathway involved was elucidated. METHODS: EADs was obtained from the root of D. suffruticosa by using sequential solvent extraction. Cytotoxicity was determined by using MTT assay, mode of cell death by cell cycle analysis and apoptosis induction by Annexin-FITC/PI assay. Morphology changes in cells were observed under inverted light microscope. Involvement of selected genes in the oxidative stress-mediated signaling pathway was explored using multiplex gene expression analysis. RESULTS: The treatment of EADs caused cytotoxicity to MCF-7 cells in a dose- and time-dependent manner at 24, 48 and 72 hours with IC50 of 76 ± 2.3, 58 ± 0.7 and 39 ± 3.6 µg/mL, respectively. The IC50 of tamoxifen-treated MCF-7 cells was 8 ± 0.5 µg/mL. Induction of apoptosis by EADs was dose- and time- dependent. EADs induced non-phase specific cell cycle arrest at different concentration and time point. The multiplex mRNA expression study indicated that EADs-induced apoptosis was accompanied by upregulation of the expression of SOD1, SOD2, NF-κB, p53, p38 MAPK, and catalase, but downregulation of Akt1. CONCLUSION: It is suggested that EADs induced apoptosis in MCF-7 cells by modulating numerous genes which are involved in oxidative stress pathway. Therefore, EADs has the potential to act as an effective intervention against breast cancer cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Dilleniaceae , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Adenocarcinoma/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Catalase/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Feminino , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
BMC Complement Altern Med ; 14: 467, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25475556

RESUMO

BACKGROUND: Apoptosis is often the end result of oxidative damage to neurons. Due to shared pathways between oxidative stress, apoptosis and antioxidant defence systems, an oxidative insult could end up causing cellular apoptosis or survival depending on the severity of the insult and cellular responses. Plant bioresources have received close attention in recent years for their potential role in regulating the pathways involved in apoptosis and oxidative stress in favour of cell survival. Rice bran is a bioactive-rich by-product of rice milling process. It possesses antioxidant properties, making it a promising source of antioxidants that could potentially prevent oxidative stress-induced neurodegenerative diseases. METHODS: Thus, the present study investigated the neuroprotective properties of oryzanol-rich fraction (ORF) against hydrogen peroxide (H2O2)-induced neurotoxicity in differentiated human neuroblastoma SH-SY5Y cells. ORF was extracted from rice bran using a green technology platform, supercritical fluid extraction system. Furthermore, its effects on cell viability, morphological changes, cell cycle, and apoptosis were evaluated. The underlying transcriptomic changes involved in regulation of oxidative stress, apoptosis and antioxidant defence systems were equally studied. RESULTS: ORF protected differentiated SH-SY5Y cells against H2O2-induced neurotoxicity through preserving the mitochondrial metabolic enzyme activities, thus reducing apoptosis. The mechanistic basis for the neuroprotective effects of ORF included upregulation of antioxidant genes (catalase, SOD 1 and SOD 2), downregulation of pro-apoptotic genes (JNK, TNF, ING3, BAK1, BAX, p21 and caspase-9), and upregulation of anti-apoptotic genes (ERK1/2, AKT1 and NF-Kß). CONCLUSION: These findings suggest ORF may be an effective antioxidant that could prevent oxidative stress-induced neurodegenerative disorders.


Assuntos
Peróxido de Hidrogênio/toxicidade , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/farmacologia , Substâncias Protetoras/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Transcriptoma/efeitos dos fármacos
10.
BMC Complement Altern Med ; 14: 197, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24947113

RESUMO

BACKGROUND: Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells. METHODS: Dillenia suffruticosa root was extracted by sequential solvent extraction. The anti-proliferative activity of DCM-DS was determined by using MTT assay. The mode of cell death was evaluated by using inverted light microscope and Annexin-V/PI-flow cytometry analysis. Cell cycle analysis and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry. MCF-7 cells were co-treated with antioxidants α-tocopherol and ascorbic acid to evaluate whether the cell death was mainly due to oxidative stress. GeXP-based multiplex system was employed to investigate the expression of apoptotic, growth and survival genes in MCF-7 cells. Western blot analysis was performed to confirm the expression of the genes. RESULTS: DCM-DS was cytotoxic to the MCF-7 cells in a time-and dose-dependent manner. The IC50 values of DCM-DS at 24, 48 and 72 hours were 20.3 ± 2.8, 17.8 ± 1.5 and 15.5 ± 0.5 µg/mL, respectively. Cell cycle analysis revealed that DCM-DS induced G0/G1 and G2/M phase cell cycle arrest in MCF-7 cells at low concentration (12.5 and 25 µg/mL) and high concentration (50 µg/mL), respectively. Although Annexin-V/PI-flow cytometry analysis has confirmed that DCM-DS induced apoptosis in MCF-7 cells, the distinct characteristics of apoptosis such as membrane blebbing, chromatin condensation, nuclear fragmentation and formation of apoptotic bodies were not observed under microscope. DCM-DS induced formation of ROS in MCF-7 cells. Nevertheless, co-treatment with antioxidants did not attenuate the cell death at low concentration of DCM-DS. The pro-apoptotic gene JNK was up-regulated whereby anti-apoptotic genes AKT1 and ERK1/2 were down-regulated in a dose-dependent manner. Western blot analysis has confirmed that DCM-DS significantly up-regulated the expression of pro-apoptotic JNK1, pJNK and down-regulated anti-apoptotic AKT1, ERK1 in MCF-7 cells. CONCLUSION: DCM-DS induced cell cycle arrest and apoptosis in MCF-7 cells via multiple signalling pathways. It shows the potential of DCM-DS to be developed to target the cancer cells with mutant caspase-3.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/deficiência , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dilleniaceae/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Raízes de Plantas/química , Espécies Reativas de Oxigênio/metabolismo
11.
Life Sci ; 352: 122868, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936604

RESUMO

Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.

12.
J Cosmet Dermatol ; 23(6): 2117-2124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366687

RESUMO

OBJECTIVE: Despite the demonstrated anti-melanogenic and UV protective effects of Zerumbone (ZER) in vitro, there is a lack of clinical trials that have been done to assess these properties. The primary objective of this study was to assess the effectiveness of ZER in lightening the skin tone of human participants with a single-blind approach. METHODS: Twenty-six participants were randomly assigned to two groups to investigate the application location (left or right volar forearm) for the placebo and ZER creams. Both creams were topically administered to the volar forearms twice daily over a duration of 4 weeks. Initial skin irritation was assessed before and 30 min after applying creams. The melanin and erythema levels were quantified with Mexameter MX 18. RESULTS: Twenty participants were included in the analysis. The cream formulation had excellent physical properties and was well-received by the participants. The initial skin irritation study results indicated that neither of the creams elicited an allergic reaction. The administration of ZER cream resulted in a statistically significant reduction in melanin levels (p < 0.05) after 1 week compared to the initial baseline. Furthermore, after 2 weeks of application, ZER cream demonstrated significant differences in melanin levels compared to placebo (p < 0.05). No adverse effects were observed in the group using ZER cream. CONCLUSION: ZER demonstrated significant potential as a skin-lightening agent.


Assuntos
Sesquiterpenos , Creme para a Pele , Preparações Clareadoras de Pele , Pigmentação da Pele , Humanos , Adulto , Creme para a Pele/administração & dosagem , Creme para a Pele/efeitos adversos , Feminino , Método Simples-Cego , Sesquiterpenos/administração & dosagem , Sesquiterpenos/efeitos adversos , Sesquiterpenos/farmacologia , Adulto Jovem , Masculino , Pigmentação da Pele/efeitos dos fármacos , Preparações Clareadoras de Pele/administração & dosagem , Preparações Clareadoras de Pele/efeitos adversos , Melaninas/análise , Administração Cutânea , Eritema/induzido quimicamente , Eritema/prevenção & controle , Pessoa de Meia-Idade , Antebraço , Pele/efeitos dos fármacos
13.
Iran J Basic Med Sci ; 27(2): 134-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234674

RESUMO

Antibiotic resistance is fast spreading globally, leading to treatment failures and adverse clinical outcomes. This review focuses on the resistance mechanisms of the top five threatening pathogens identified by the World Health Organization's global priority pathogens list: carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium and methicillin, vancomycin-resistant Staphylococcus aureus. Several novel drug candidates have shown promising results from in vitro and in vivo studies, as well as clinical trials. The novel drugs against carbapenem-resistant bacteria include LCB10-0200, apramycin, and eravacycline, while for Enterobacteriaceae, the drug candidates are LysSAP-26, DDS-04, SPR-206, nitroxoline, cefiderocol, and plazomicin. TNP-209, KBP-7072, and CRS3123 are agents against E. faecium, while Debio 1450, gepotidacin, delafloxacin, and dalbavancin are drugs against antibiotic-resistant S. aureus. In addition to these identified drug candidates, continued in vitro and in vivo studies are required to investigate small molecules with potential antibacterial effects screened by computational receptor docking. As drug discovery progresses, preclinical and clinical studies should also be extensively conducted on the currently available therapeutic agents to unravel their potential antibacterial effect and spectrum of activity, as well as safety and efficacy profiles.

14.
Signal Transduct Target Ther ; 9(1): 37, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360862

RESUMO

The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Probióticos , Humanos , Encéfalo/metabolismo , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/metabolismo , Eixo Encéfalo-Intestino , Probióticos/uso terapêutico , Prebióticos
15.
Molecules ; 18(11): 13320-39, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24172241

RESUMO

The present research was designed to evaluate the anticancer properties of Dillenia suffruticosa extract. Our focus was on the mode of cell death and cell cycle arrest induced in breast cancer cells by the active fractions (designated as D/F4, D/F5 and EA/P2) derived from chromatographic fractionation of D. suffruticosa extracts. The results showed that the active fractions are more cytotoxic towards MCF-7 (estrogen positive breast cancer cells) and MDA-MB-231 (estrogen negative breast cancer cells) as compared to other selected cancer cell lines that included HeLa, A459 and CaOV3. The induction of cell death through apoptosis by the active fractions on the breast cancer cells was confirmed by Annexin V-FITC and PI staining. Cell cycle analysis revealed that D/F4 and EA/P2 induced G2/M phase cell cycle arrest in MCF-7 cells. On the other hand, MDA-MB-231 cells treated with D/F4 and D/F5 accumulated in the sub-G1 phase without cell cycle arrest, suggesting the induction of cell death through apoptosis. The data suggest that the active fractions of D. suffruticosa extract eliminated breast cancer cells through induction of apoptosis and cell cycle arrest. The reason why MCF-7 was more sensitive towards the treatment than MDA-MB-231 remains unclear. This warrants further work, especially on the role of hormones in response towards cytotoxic agents. In addition, more studies on the mechanisms underlying the induction of apoptosis and cell cycle arrest by the plant extract also need to be carried out.


Assuntos
Dilleniaceae/química , Extratos Vegetais/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Células MCF-7 , Extratos Vegetais/química
16.
IEEE Rev Biomed Eng ; 16: 386-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34905495

RESUMO

Over the last decade, stem cell-associated therapies are widely used because of their potential in self-renewable and multipotent differentiation ability. Stem cells have become more attractive for aesthetic uses and plastic surgery, including scar reduction, breast augmentation, facial contouring, hand rejuvenation, and anti-aging. The current preclinical and clinical studies of stem cells on aesthetic uses also showed promising outcomes. Adipose-derived stem cells are commonly used for fat grafting that demonstrated scar improvement, anti-aging, skin rejuvenation properties, etc. While stem cell-based products have yet to receive approval from the FDA for aesthetic medicine and plastic surgery. Moving forward, the review on the efficacy and potential of stem cell-based therapy for aesthetic and plastic surgery is limited. In the present review, we discuss the current status and recent advances of using stem cells for aesthetic and plastic surgery. The potential of cell-free therapy and tissue engineering in this field is also highlighted. The clinical applications, advantages, and limitations are also discussed. This review also provides further works that need to be investigated to widely apply stem cells in the clinic, especially in aesthetic and plastic contexts.


Assuntos
Cirurgia Plástica , Humanos , Tecido Adiposo/transplante , Cicatriz , Células-Tronco , Estética
17.
Artigo em Inglês | MEDLINE | ID: mdl-37921129

RESUMO

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.

18.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111701

RESUMO

Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.

19.
Int J Mol Sci ; 13(8): 9692-9708, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22949825

RESUMO

The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Oryza/química , Extratos Vegetais/farmacologia , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Tumorais Cultivadas
20.
Anticancer Agents Med Chem ; 22(5): 999-1011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34238173

RESUMO

BACKGROUND: The lack of specificity, severe side effects, and development of drug resistance have largely limited the use of platinum-based compounds in cancer treatment. Therefore, copper complexes have emerged as potential alternatives to platinum-based compounds. OBJECTIVE: Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells. METHODS: Cytotoxic effects of ternary copper (II) complex in HT-29 cells was evaluated using MTT assay, Real-Time Cell Analysis (RTCA) and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/Propidium Iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular Reactive Oxygen Species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis. RESULTS: Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP- 1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed. CONCLUSION: Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Cobre , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Cobre/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA