Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 185(3): 785-798, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33067778

RESUMO

PURPOSE: Limited epidemiologic data are available on the expression of adipokines leptin (LEP) and adiponectin (ADIPOQ) and adipokine receptors (LEPR, ADIPOR1, ADIPOR2) in the breast tumor microenvironment (TME). The associations of gene expression of these biomarkers with tumor clinicopathology are not well understood. METHODS: NanoString multiplexed assays were used to assess the gene expression levels of LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 within tumor tissues among 162 Black and 55 White women with newly diagnosed breast cancer. Multivariate mixed effects models were used to estimate associations of gene expression with breast tumor clinicopathology (overall and separately among Blacks). RESULTS: Black race was associated with lower gene expression of LEPR (P = 0.002) and ADIPOR1 (P = 0.01). Lower LEP, LEPR, and ADIPOQ gene expression were associated with higher tumor grade (P = 0.0007, P < 0.0001, and P < 0.0001, respectively) and larger tumor size (P < 0.0001, P = 0.0005, and P < 0.0001, respectively). Lower ADIPOQ expression was associated with ER- status (P = 0.0005), and HER2-enriched (HER2-E; P = 0.0003) and triple-negative (TN; P = 0.002) subtypes. Lower ADIPOR2 expression was associated with Ki67+ status (P = 0.0002), ER- status (P < 0.0001), PR- status (P < 0.0001), and TN subtype (P = 0.0002). Associations of lower adipokine and adipokine receptor gene expression with ER-, HER2-E, and TN subtypes were confirmed using data from The Cancer Genome Atlas (P-values < 0.005). CONCLUSION: These findings suggest that lower expression of ADIPOQ, ADIPOR2, LEP, and LEPR in the breast TME might be indicators of more aggressive breast cancer phenotypes. Validation of these findings are warranted to elucidate the role of the adipokines and adipokine receptors in long-term breast cancer prognosis.


Assuntos
Neoplasias da Mama , Receptores de Adipocina , Adipocinas/genética , Adiponectina/genética , Neoplasias da Mama/genética , Feminino , Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Receptores para Leptina/genética , Microambiente Tumoral/genética
2.
Breast Cancer Res ; 22(1): 18, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046756

RESUMO

BACKGROUND: The molecular mechanisms underlying the association between increased adiposity and aggressive breast cancer phenotypes remain unclear, but likely involve the adipokines, leptin (LEP) and adiponectin (ADIPOQ), and their receptors (LEPR, ADIPOR1, ADIPOR2). METHODS: We used immunohistochemistry (IHC) to assess LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 expression in breast tumor tissue microarrays among a sample of 720 women recently diagnosed with breast cancer (540 of whom self-identified as Black). We scored IHC expression quantitatively, using digital pathology analysis. We abstracted data on tumor grade, tumor size, tumor stage, lymph node status, Ki67, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) from pathology records, and used ER, PR, and HER2 expression data to classify breast cancer subtype. We used multivariable mixed effects models to estimate associations of IHC expression with tumor clinicopathology, in the overall sample and separately among Blacks. RESULTS: Larger proportions of Black than White women were overweight or obese and had more aggressive tumor features. Older age, Black race, postmenopausal status, and higher body mass index were associated with higher LEPR IHC expression. In multivariable models, lower LEPR IHC expression was associated with ER-negative status and triple-negative subtype (P < 0.0001) in the overall sample and among Black women only. LEP, ADIPOQ, ADIPOR1, and ADIPOR2 IHC expression were not significantly associated with breast tumor clinicopathology. CONCLUSIONS: Lower LEPR IHC expression within the breast tumor microenvironment might contribute mechanistically to inter-individual variation in aggressive breast cancer clinicopathology, particularly ER-negative status and triple-negative subtype.


Assuntos
Adipocinas/metabolismo , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Adipocina/metabolismo , Receptores para Leptina/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/patologia , Adulto Jovem
3.
BMC Bioinformatics ; 16: 399, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627175

RESUMO

BACKGROUND: We describe a suite of tools and methods that form a core set of capabilities for researchers and clinical investigators to evaluate multiple analytical pipelines and quantify sensitivity and variability of the results while conducting large-scale studies in investigative pathology and oncology. The overarching objective of the current investigation is to address the challenges of large data sizes and high computational demands. RESULTS: The proposed tools and methods take advantage of state-of-the-art parallel machines and efficient content-based image searching strategies. The content based image retrieval (CBIR) algorithms can quickly detect and retrieve image patches similar to a query patch using a hierarchical analysis approach. The analysis component based on high performance computing can carry out consensus clustering on 500,000 data points using a large shared memory system. CONCLUSIONS: Our work demonstrates efficient CBIR algorithms and high performance computing can be leveraged for efficient analysis of large microscopy images to meet the challenges of clinically salient applications in pathology. These technologies enable researchers and clinical investigators to make more effective use of the rich informational content contained within digitized microscopy specimens.


Assuntos
Algoritmos , Diagnóstico por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação , Reconhecimento Automatizado de Padrão , Neoplasias da Próstata/patologia , Análise Serial de Tecidos/instrumentação , Análise por Conglomerados , Humanos , Masculino , Gradação de Tumores
4.
Bioinformatics ; 30(7): 996-1002, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24215030

RESUMO

MOTIVATION: The capacity to systematically search through large image collections and ensembles and detect regions exhibiting similar morphological characteristics is central to pathology diagnosis. Unfortunately, the primary methods used to search digitized, whole-slide histopathology specimens are slow and prone to inter- and intra-observer variability. The central objective of this research was to design, develop, and evaluate a content-based image retrieval system to assist doctors for quick and reliable content-based comparative search of similar prostate image patches. METHOD: Given a representative image patch (sub-image), the algorithm will return a ranked ensemble of image patches throughout the entire whole-slide histology section which exhibits the most similar morphologic characteristics. This is accomplished by first performing hierarchical searching based on a newly developed hierarchical annular histogram (HAH). The set of candidates is then further refined in the second stage of processing by computing a color histogram from eight equally divided segments within each square annular bin defined in the original HAH. A demand-driven master-worker parallelization approach is employed to speed up the searching procedure. Using this strategy, the query patch is broadcasted to all worker processes. Each worker process is dynamically assigned an image by the master process to search for and return a ranked list of similar patches in the image. RESULTS: The algorithm was tested using digitized hematoxylin and eosin (H&E) stained prostate cancer specimens. We have achieved an excellent image retrieval performance. The recall rate within the first 40 rank retrieved image patches is ∼90%. AVAILABILITY AND IMPLEMENTATION: Both the testing data and source code can be downloaded from http://pleiad.umdnj.edu/CBII/Bioinformatics/.


Assuntos
Algoritmos , Análise por Conglomerados , Cor , Processamento de Imagem Assistida por Computador
5.
Microsc Microanal ; 21(5): 1224-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26343283

RESUMO

Atomic force microscopy (AFM) and other forms of scanning probe microscopy have been successfully used to assess biomechanical and bioelectrical characteristics of individual cells. When extending such approaches to heterogeneous tissue, there exists the added challenge of traversing the tissue while directing the probe to the exact location of the targeted biological components under study. Such maneuvers are extremely challenging owing to the relatively small field of view, limited availability of reliable visual cues, and lack of context. In this study we designed a system that leverages the visual topology of the serial tissue sections of interest to help guide robotic control of the AFM stage to provide the requisite navigational support. The process begins by mapping the whole-slide image of a stained specimen with a well-matched, consecutive section of unstained section of tissue in a piecewise fashion. The morphological characteristics and localization of any biomarkers in the stained section can be used to position the AFM probe in the unstained tissue at regions of interest where the AFM measurements are acquired. This general approach can be utilized in various forms of microscopy for navigation assistance in tissue specimens.


Assuntos
Neoplasias da Mama/patologia , Microscopia de Força Atômica/métodos , Robótica/métodos , Feminino , Humanos , Microtomia , Coloração e Rotulagem
6.
BMC Bioinformatics ; 15: 287, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25155691

RESUMO

BACKGROUND: The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. RESULTS: The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. CONCLUSIONS: In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.


Assuntos
Algoritmos , Diagnóstico por Imagem , Armazenamento e Recuperação da Informação/métodos , Patologia , Retroalimentação , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes
7.
Sens Actuators B Chem ; 199: 259-268, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25013305

RESUMO

Micro-Electro-Mechanical-Systems (MEMS) are desirable for use within medical diagnostics because of their capacity to manipulate and analyze biological materials at the microscale. Biosensors can be incorporated into portable lab-on-a-chip devices to quickly and reliably perform diagnostics procedure on laboratory and clinical samples. In this paper, electrical impedance-based measurements were used to distinguish between benign and cancerous breast tissues using microchips in a real-time and label-free manner. Two different microchips having inter-digited electrodes (10 µm width with 10 µm spacing and 10 µm width with 30 µm spacing) were used for measuring the impedance of breast tissues. The system employs Agilent E4980A precision impedance analyzer. The impedance magnitude and phase were collected over a frequency range of 100 Hz to 2 MHz. The benign group and cancer group showed clearly distinguishable impedance properties. At 200 kHz, the difference in impedance of benign and cancerous breast tissue was significantly higher (3110 Ω) in the case of microchips having 10 µm spacing compared to microchip having 30 µm spacing (568 Ω).

8.
Cancer Inform ; 23: 11769351231223806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322427

RESUMO

Large-scale, multi-site collaboration is becoming indispensable for a wide range of research and clinical activities in oncology. To facilitate the next generation of advances in cancer biology, precision oncology and the population sciences it will be necessary to develop and implement data management and analytic tools that empower investigators to reliably and objectively detect, characterize and chronicle the phenotypic and genomic changes that occur during the transformation from the benign to cancerous state and throughout the course of disease progression. To facilitate these efforts it is incumbent upon the informatics community to establish the workflows and architectures that automate the aggregation and organization of a growing range and number of clinical data types and modalities ranging from new molecular and laboratory tests to sophisticated diagnostic imaging studies. In an attempt to meet those challenges, leading health care centers across the country are making steep investments to establish enterprise-wide, data warehouses. A significant limitation of many data warehouses, however, is that they are designed to support only alphanumeric information. In contrast to those traditional designs, the system that we have developed supports automated collection and mining of multimodal data including genomics, digital pathology and radiology images. In this paper, our team describes the design, development and implementation of a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide actionable insight into the underlying characteristics of the tumor environment that would not be revealed using standard methods and tools. The System features a flexible Extract, Transform and Load (ETL) interface that enables it to adapt to aggregate data originating from different clinical and research sources depending on the specific EHR and other data sources utilized at a given deployment site.

9.
Artigo em Inglês | MEDLINE | ID: mdl-24294144

RESUMO

Contact mode Atomic Force Microscopy (CM-AFM) is popularly used by the biophysics community to study mechanical properties of cells cultured in petri dishes, or tissue sections fixed on microscope slides. While cells are fairly easy to locate, sampling in spatially heterogeneous tissue specimens is laborious and time-consuming at higher magnifications. Furthermore, tissue registration across multiple magnifications for AFM-based experiments is a challenging problem, suggesting the need to automate the process of AFM indentation on tissue. In this work, we have developed an image-guided micropositioning system to align the AFM probe and human breast-tissue cores in an automated manner across multiple magnifications. Our setup improves efficiency of the AFM indentation experiments considerably. Note to Practitioners: Human breast tissue is by nature heterogeneous, and in the samples we studied, epithelial tissue is formed by groups of functional breast epithelial cells that are surrounded by stromal tissue in a complex intertwined way. Therefore sampling a specific cell type on an unstained specimen is very difficult. To aid us, we use digital stained images of the same tissue annotated by a certified pathologist to identify the region of interest (ROI) at a coarse magnification and an image-guided positioning system to place the unstained tissue near the AFM probe tip. Using our setup, we could considerably reduce AFM operating time and we believe that our setup is a viable supplement to commercial AFM stages with limited X-Y range.

10.
BMC Bioinformatics ; 13: 232, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971117

RESUMO

BACKGROUND: Correct segmentation is critical to many applications within automated microscopy image analysis. Despite the availability of advanced segmentation algorithms, variations in cell morphology, sample preparation, and acquisition settings often lead to segmentation errors. This manuscript introduces a ranked-retrieval approach using logistic regression to automate selection of accurately segmented nuclei from a set of candidate segmentations. The methodology is validated on an application of spatial gene repositioning in breast cancer cell nuclei. Gene repositioning is analyzed in patient tissue sections by labeling sequences with fluorescence in situ hybridization (FISH), followed by measurement of the relative position of each gene from the nuclear center to the nuclear periphery. This technique requires hundreds of well-segmented nuclei per sample to achieve statistical significance. Although the tissue samples in this study contain a surplus of available nuclei, automatic identification of the well-segmented subset remains a challenging task. RESULTS: Logistic regression was applied to features extracted from candidate segmented nuclei, including nuclear shape, texture, context, and gene copy number, in order to rank objects according to the likelihood of being an accurately segmented nucleus. The method was demonstrated on a tissue microarray dataset of 43 breast cancer patients, comprising approximately 40,000 imaged nuclei in which the HES5 and FRA2 genes were labeled with FISH probes. Three trained reviewers independently classified nuclei into three classes of segmentation accuracy. In man vs. machine studies, the automated method outperformed the inter-observer agreement between reviewers, as measured by area under the receiver operating characteristic (ROC) curve. Robustness of gene position measurements to boundary inaccuracies was demonstrated by comparing 1086 manually and automatically segmented nuclei. Pearson correlation coefficients between the gene position measurements were above 0.9 (p < 0.05). A preliminary experiment was conducted to validate the ranked retrieval in a test to detect cancer. Independent manual measurement of gene positions agreed with automatic results in 21 out of 26 statistical comparisons against a pooled normal (benign) gene position distribution. CONCLUSIONS: Accurate segmentation is necessary to automate quantitative image analysis for applications such as gene repositioning. However, due to heterogeneity within images and across different applications, no segmentation algorithm provides a satisfactory solution. Automated assessment of segmentations by ranked retrieval is capable of reducing or even eliminating the need to select segmented objects by hand and represents a significant improvement over binary classification. The method can be extended to other high-throughput applications requiring accurate detection of cells or nuclei across a range of biomedical applications.


Assuntos
Núcleo Celular/genética , Genes Neoplásicos , Processamento de Imagem Assistida por Computador , Algoritmos , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Núcleo Celular/ultraestrutura , Feminino , Humanos , Hibridização in Situ Fluorescente , Modelos Logísticos , Curva ROC
11.
J Pathol Inform ; 13: 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136672

RESUMO

BACKGROUND: Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment, and survival, on every cancer case that is reported across all U.S. states and territories. The goal of our project is to enrich NCI's Surveillance, Epidemiology, and End Results (SEER) registry data with high-quality population-based biospecimen data in the form of digital pathology, machine-learning-based classifications, and quantitative histopathology imaging feature sets (referred to here as Pathomics features). MATERIALS AND METHODS: As part of the project, the underlying informatics infrastructure was designed, tested, and implemented through close collaboration with several participating SEER registries to ensure consistency with registry processes, computational scalability, and ability to support creation of population cohorts that span multiple sites. Utilizing computational imaging algorithms and methods to both generate indices and search for matches makes it possible to reduce inter- and intra-observer inconsistencies and to improve the objectivity with which large image repositories are interrogated. RESULTS: Our team has created and continues to expand a well-curated repository of high-quality digitized pathology images corresponding to subjects whose data are routinely collected by the collaborating registries. Our team has systematically deployed and tested key, visual analytic methods to facilitate automated creation of population cohorts for epidemiological studies and tools to support visualization of feature clusters and evaluation of whole-slide images. As part of these efforts, we are developing and optimizing advanced search and matching algorithms to facilitate automated, content-based retrieval of digitized specimens based on their underlying image features and staining characteristics. CONCLUSION: To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to support the expansion and management of a growing repository of high-quality digitized pathology and information-rich, population cohorts containing objective imaging and clinical attributes to facilitate studies that seek to discriminate among different subtypes of disease, stratify patient populations, and perform comparisons of tumor characteristics within and across patient cohorts. We have also successfully developed a suite of tools based on a deep-learning method to perform quantitative characterizations of tumor regions, assess infiltrating lymphocyte distributions, and generate objective nuclear feature measurements. As part of these efforts, our team has implemented reliable methods that enable investigators to systematically search through large repositories to automatically retrieve digitized pathology specimens and correlated clinical data based on their computational signatures.

12.
Int J Comput Assist Radiol Surg ; 16(2): 197-206, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33420641

RESUMO

PURPOSE: Recently, the outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic has seriously endangered human health and life. In fighting against COVID-19, effective diagnosis of infected patient is critical for preventing the spread of diseases. Due to limited availability of test kits, the need for auxiliary diagnostic approach has increased. Recent research has shown radiography of COVID-19 patient, such as CT and X-ray, contains salient information about the COVID-19 virus and could be used as an alternative diagnosis method. Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost, and portability gains much attention and becomes very promising. In order to reduce intra- and inter-observer variability, during radiological assessment, computer-aided diagnostic tools have been used in order to supplement medical decision making and subsequent management. Computational methods with high accuracy and robustness are required for rapid triaging of patients and aiding radiologist in the interpretation of the collected data. METHOD: In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for multi-class improved classification of COVID-19 from CXR images. CXR images are enhanced using a local phase-based image enhancement method. The enhanced images, together with the original CXR data, are used as an input to our proposed CNN architecture. Using ablation studies, we show the effectiveness of the enhanced images in improving the diagnostic accuracy. We provide quantitative evaluation on two datasets and qualitative results for visual inspection. Quantitative evaluation is performed on data consisting of 8851 normal (healthy), 6045 pneumonia, and 3323 COVID-19 CXR scans. RESULTS: In Dataset-1, our model achieves 95.57% average accuracy for a three classes classification, 99% precision, recall, and F1-scores for COVID-19 cases. For Dataset-2, we have obtained 94.44% average accuracy, and 95% precision, recall, and F1-scores for detection of COVID-19. CONCLUSIONS: Our proposed multi-feature-guided CNN achieves improved results compared to single-feature CNN proving the importance of the local phase-based CXR image enhancement. Future work will involve further evaluation of the proposed method on a larger-size COVID-19 dataset as they become available.


Assuntos
COVID-19/diagnóstico por imagem , Redes Neurais de Computação , Pneumonia/diagnóstico por imagem , Radiografia Torácica/métodos , Tórax/diagnóstico por imagem , Algoritmos , Aprendizado Profundo , Humanos , Pandemias , Tomografia Computadorizada por Raios X/métodos
13.
Int J Comput Assist Radiol Surg ; 16(9): 1537-1548, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097226

RESUMO

PURPOSE: Ultrasound (US) is the preferred modality for fatty liver disease diagnosis due to its noninvasive, real-time, and cost-effective imaging capabilities. However, traditional B-mode US is qualitative, and therefore, the assessment is very subjective. Computer-aided diagnostic tools can improve the specificity and sensitivity of US and help clinicians to perform uniform diagnoses. METHODS: In this work, we propose a novel deep learning model for nonalcoholic fatty liver disease classification from US data. We design a multi-feature guided multi-scale residual convolutional neural network (CNN) architecture to capture features of different receptive fields. B-mode US images are combined with their corresponding local phase filtered images and radial symmetry transformed images as multi-feature inputs for the network. Various fusion strategies are studied to improve prediction accuracy. We evaluate the designed network architectures on B-mode in vivo liver US images collected from 55 subjects. We also provide quantitative results by comparing our proposed multi-feature CNN architecture against traditional CNN designs and machine learning methods. RESULTS: Quantitative results show an average classification accuracy above 90% over tenfold cross-validation. Our proposed method achieves a 97.8% area under the ROC curve (AUC) for the patient-specific leave-one-out cross-validation (LOOCV) evaluation. Comprehensive validation results further demonstrate that our proposed approaches achieve significant improvements compared to training mono-feature CNN architectures ([Formula: see text]). CONCLUSIONS: Feature combination is valuable for the traditional classification methods, and the use of multi-scale CNN can improve liver classification accuracy. Based on the promising performance, the proposed method has the potential in practical applications to help radiologists diagnose nonalcoholic fatty liver disease.


Assuntos
Hepatopatias , Redes Neurais de Computação , Humanos , Hepatopatias/diagnóstico por imagem , Aprendizado de Máquina , Ultrassonografia
14.
Cell Death Differ ; 27(1): 269-283, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160716

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is a genetic syndrome in which patients develop neuroendocrine tumors (NETs), including pancreatic neuroendocrine tumors (PanNETs). The prolonged latency of tumor development in MEN1 patients suggests a likelihood that other mutations cooperate with Men1 to induce PanNETs. We propose that Pten loss combined with Men1 loss accelerates tumorigenesis. To test this, we developed two genetically engineered mouse models (GEMMs)-MPR (Men1flox/flox Ptenflox/flox RIP-Cre) and MPM (Men1flox/flox Ptenflox/flox MIP-Cre) using the Cre-LoxP system with insulin-specific biallelic inactivation of Men1 and Pten. Cre in the MPR mouse model was driven by the transgenic rat insulin 2 promoter while in the MPM mouse model was driven by the knock-in mouse insulin 1 promoter. Both mouse models developed well-differentiated (WD) G1/G2 PanNETs at a much shorter latency than Men1 or Pten single deletion alone and exhibited histopathology of human MEN1-like tumor. The MPR model, additionally, developed pituitary neuroendocrine tumors (PitNETs) in the same mouse at a much shorter latency than Men1 or Pten single deletion alone as well. Our data also demonstrate that Pten plays a role in NE tumorigenesis in pancreas and pituitary. Treatment with the mTOR inhibitor rapamycin delayed the growth of PanNETs in both MPR and MPM mice, as well as the growth of PitNETs, resulting in prolonged survival in MPR mice. Our MPR and MPM mouse models are the first to underscore the cooperative roles of Men1 and Pten in cancer, particularly neuroendocrine cancer. The early onset of WD PanNETs mimicking the human counterpart in MPR and MPM mice at 7 weeks provides an effective platform for evaluating therapeutic opportunities for NETs through targeting the MENIN-mediated and PI3K/AKT/mTOR signaling pathways.


Assuntos
Modelos Animais de Doenças , Camundongos , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Antibióticos Antineoplásicos/uso terapêutico , Carcinogênese , Deleção de Genes , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , PTEN Fosfo-Hidrolase/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Sirolimo/uso terapêutico
15.
J Pathol Inform ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620309

RESUMO

BACKGROUND: Grading of prostatic adenocarcinoma is based on the Gleason scoring system and the more recently established prognostic grade groups. Typically, prostate cancer grading is performed by pathologists based on the morphology of the tumor on hematoxylin and eosin (H and E) slides. In this study, we investigated the histopathological image features with various survival models and attempted to study their correlations. METHODS: Three texture methods (speeded-up robust features, histogram of oriented gradient, and local binary pattern) and two convolutional neural network (CNN)-based methods were applied to quantify histopathological image features. Five survival models were assessed on those image features in the context with other prostate clinical prognostic factors, including primary and secondary Gleason patterns, prostate-specific antigen levels, age, and clinical tumor stages. RESULTS: Based on statistical comparisons among different image features with survival models, image features from CNN-based method with a recurrent neural network called CNN-long-short-term memory provided the highest hazard ratio of prostate cancer recurrence under Cox regression with an elastic net penalty. CONCLUSIONS: This approach outperformed the other image quantification methods listed above. Using this approach, patient outcomes were highly correlated with the histopathological image features of the tissue samples. In future studies, we plan to investigate the potential use of this approach for predicting recurrence in a wider range of cancer types.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31158269

RESUMO

Computational image analysis is one means for evaluating digitized histopathology specimens that can increase the reproducibility and reliability with which cancer diagnoses are rendered while simultaneously providing insight as to the underlying mechanisms of disease onset and progression. A major challenge that is confronted when analyzing samples that have been prepared at disparate laboratories and institutions is that the algorithms used to assess the digitized specimens often exhibit heterogeneous staining characteristics because of slight differences in incubation times and the protocols used to prepare the samples. Unfortunately, such variations can render a prediction model learned from one batch of specimens ineffective for characterizing an ensemble originating from another site. In this work, we propose to adopt unsupervised domain adaptation to effectively transfer the discriminative knowledge obtained from any given source domain to the target domain without requiring any additional labeling or annotation of images at the target site. In this paper, our team investigates the use of two approaches for performing the adaptation: (1) color normalization and (2) adversarial training. The adversarial training strategy is implemented through the use of convolutional neural networks to find an invariant feature space and Siamese architecture within the target domain to add a regularization that is appropriate for the entire set of whole-slide images. The adversarial adaptation results in significant classification improvement compared with the baseline models under a wide range of experimental settings.

17.
Prostate ; 68(16): 1743-52, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18767033

RESUMO

BACKGROUND: Autophagy is a starvation induced cellular process of self-digestion that allows cells to degrade cytoplasmic contents. The understanding of autophagy, as either a mechanism of resistance to therapies that induce metabolic stress, or as a means to cell death, is rapidly expanding and supportive of a new paradigm of therapeutic starvation. METHODS: To determine the effect of therapeutic starvation in prostate cancer, we studied the effect of the prototypical inhibitor of metabolism, 2-deoxy-D-glucose (2DG), in multiple cellular models including a transfected pEGFP-LC3 autophagy reporter construct in PC-3 and LNCaP cells. RESULTS: We found that 2DG induced cytotoxicity in PC-3 and LNCaP cells in a dose dependent fashion. We also found that 2DG modulated checkpoint proteins cdk4, and cdk6. Using the transfected pEGFP-LC3 autophagy reporter construct, we found that 2DG induced LC3 membrane translocation, characteristic of autophagy. Furthermore, knockdown of beclin1, an essential regulator of autophagy, abrogated 2DG induced autophagy. Using Western analysis for LC3 protein, we also found increased LC3-II expression in 2DG treated cells, again consistent with autophagy. In an effort to develop markers that may be predictive of autophagy, for assessment in clinical trials, we stained human prostate tumors for Beclin1 by immunohistochemistry (IHC). Additionally, we used a digitized imaging algorithm to quantify Beclin1 staining assessment. These data demonstrate the induction of autophagy in prostate cancer by therapeutic starvation with 2DG, and support the feasibility of assessment of markers predictive of autophagy such as Beclin1 that can be utilized in clinical trials. Prostate 68: 1743-1752 (c) 2008 Wiley-Liss, Inc. These data demonstrate the induction of autophagy in prostate cancer by therapeutic starvation with 2DG, and support the feasibility of assessment of markers predictive of autophagy such as Beclin1 that can be utilized in clinical trials.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Autofagia/fisiologia , Modelos Biológicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Inanição/metabolismo , Algoritmos , Antimetabólitos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1 , Caspases/metabolismo , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Desoxiglucose/farmacologia , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Terapia Nutricional/métodos
18.
BMC Med Imaging ; 8: 11, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18534031

RESUMO

BACKGROUND: Breast cancers that overexpress the human epidermal growth factor receptor 2 (HER2) are eligible for effective biologically targeted therapies, such as trastuzumab. However, accurately determining HER2 overexpression, especially in immunohistochemically equivocal cases, remains a challenge. Manual analysis of HER2 expression is dependent on the assessment of membrane staining as well as comparisons with positive controls. In spite of the strides that have been made to standardize the assessment process, intra- and inter-observer discrepancies in scoring is not uncommon. In this manuscript we describe a pathologist assisted, computer-based continuous scoring approach for increasing the precision and reproducibility of assessing imaged breast tissue specimens. METHODS: Computer-assisted analysis on HER2 IHC is compared with manual scoring and fluorescence in situ hybridization results on a test set of 99 digitally imaged breast cancer cases enriched with equivocally scored (2+) cases. Image features are generated based on the staining profile of the positive control tissue and pixels delineated by a newly developed Membrane Isolation Algorithm. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis. RESULTS: A computer-aided diagnostic approach has been developed using a membrane isolation algorithm and quantitative use of positive immunostaining controls. By incorporating internal positive controls into feature analysis a greater Area Under the Curve (AUC) in ROC analysis was achieved than feature analysis without positive controls. Evaluation of HER2 immunostaining that utilized membrane pixels, controls, and percent area stained showed significantly greater AUC than manual scoring, and significantly less false positive rate when used to evaluate immunohistochemically equivocal cases. CONCLUSION: It has been shown that by incorporating both a membrane isolation algorithm and analysis of known positive controls a computer-assisted diagnostic algorithm was developed that can reproducibly score HER2 status in IHC stained clinical breast cancer specimens. For equivocal scoring cases, this approach performed better than standard manual evaluation as assessed by ROC analysis in our test samples. Finally, there exists potential for utilizing image-analysis techniques for improving HER2 scoring at the immunohistochemically equivocal range.


Assuntos
Algoritmos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Receptor ErbB-2/metabolismo , Biomarcadores Tumorais/análise , Feminino , Humanos , Técnicas de Sonda Molecular , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
IEEE Trans Biomed Eng ; 65(1): 96-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436838

RESUMO

GOAL: This research aims to validate a new biomarker of breast cancer by introducing electromechanical coupling factor of breast tissue samples as a possible additional indicator of breast cancer. Since collagen fibril exhibits a structural organization that gives rise to a piezoelectric effect, the difference in collagen density between normal and cancerous tissue can be captured by identifying the corresponding electromechanical coupling factor. METHODS: The design of a portable diagnostic tool and a microelectromechanical systems (MEMS)-based biochip, which is integrated with a piezoresistive sensing layer for measuring the reaction force as well as a microheater for temperature control, is introduced. To verify that electromechanical coupling factor can be used as a biomarker for breast cancer, the piezoelectric model for breast tissue is described with preliminary experimental results on five sets of normal and invasive ductal carcinoma (IDC) samples in the 25-45 temperature range. CONCLUSION: While the stiffness of breast tissues can be captured as a representative mechanical signature which allows one to discriminate among tissue types especially in the higher strain region, the electromechanical coupling factor shows more distinct differences between the normal and IDC groups over the entire strain region than the mechanical signature. From the two-sample -test, the electromechanical coupling factor under compression shows statistically significant differences ( 0.0039) between the two groups. SIGNIFICANCE: The increase in collagen density in breast tissue is an objective and reproducible characteristic of breast cancer. Although characterization of mechanical tissue property has been shown to be useful for differentiating cancerous tissue from normal tissue, using a single parameter may not be sufficient for practical usage due to inherent variation among biological samples. The portable breast cancer diagnostic tool reported in this manuscript shows the feasibility of measuring multiple parameters of breast tissue allowing for practical application.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/fisiopatologia , Mama/fisiologia , Eletrodiagnóstico/instrumentação , Eletrodiagnóstico/métodos , Desenho de Equipamento , Feminino , Humanos , Sistemas Microeletromecânicos
20.
Med Image Comput Comput Assist Interv ; 11071: 201-209, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30465047

RESUMO

Automatic and accurate Gleason grading of histopathology tissue slides is crucial for prostate cancer diagnosis, treatment, and prognosis. Usually, histopathology tissue slides from different institutions show heterogeneous appearances because of different tissue preparation and staining procedures, thus the predictable model learned from one domain may not be applicable to a new domain directly. Here we propose to adopt unsupervised domain adaptation to transfer the discriminative knowledge obtained from the source domain to the target domain with-out requiring labeling of images at the target domain. The adaptation is achieved through adversarial training to find an invariant feature space along with the proposed Siamese architecture on the target domain to add a regularization that is appropriate for the whole-slide images. We validate the method on two prostate cancer datasets and obtain significant classification improvement of Gleason scores as compared with the baseline models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA