Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chemistry ; 30(35): e202400956, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619503

RESUMO

Actinides are inherently radioactive; thus, ionizing radiation is emitted by these elements can have profound effects on its surrounding chemical environment through the formation of free radical species. While previous work has noted that the presence of free radicals in the system impacts the redox state of the actinides, there is little atomistic understanding of how these metal cations interact with free radicals. Herein, we explore the effects of radiation (UV and γ) on three U(VI) trinitrate complexes, M[UO2(NO3)3] (where M=K+, Rb+, Cs+), and their respective nitrate salts in the solid state via electron paramagnetic resonance (EPR) and Raman spectroscopy paired with Density Functional Theory (DFT) methods. We find that the alkali salts form nitrate radicals under UV and γ irradiation, but also note the presence of additional degradation products. M[UO2(NO3)3] solids also form nitrate radicals and additional DFT calculations indicate the species corresponds to a change from the bidentate bound nitrate anion into a monodentate NO3 • radical. Computational studies also highlight the need to include the second sphere coordination environment around the [UO2(NO3)3]0,1 species to gain agreement between the experimental and predicted EPR signatures.

2.
Chemistry ; 30(23): e202304049, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38183632

RESUMO

Neptunium can exist in multiple oxidation states, including the rare and poorly understood heptavalent form. In this work, we monitored the formation of heptavalent neptunium [Np(VII)O4(OH)2]3- during ozonolysis of aqueous MOH (M=Li, Na, K) solutions using a combined experimental and theoretical approach. All experimental reactions were closely monitored via absorption and vibrational spectroscopy to follow both the oxidation state and the speciation of neptunium guided by the calculated vibrational frequencies for various neptunium species. The mechanism of the reaction partly involves oxidative dissolution of transient Np(VI) oxide/hydroxide solid phases, the identity of which are dependent on the co-precipitating counter-cation Li+/Na+/K+. Additional calculations suggest that the most favorable energetic pathway occurs through the reaction of a [Np(V)O2(OH)4]3- with the hydroxide radical to form [Np(VI)O2(OH)4]2-, followed by an additional oxidation with HO⋅ to create [Np(VII)O4(OH)2]3-.

3.
Inorg Chem ; 63(11): 4957-4971, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38437845

RESUMO

Reported are the syntheses, structural characterizations, and luminescence properties of three novel [UO2Cl4]2- bearing compounds containing substituted 1,1'-dialkyl-4,4'-bipyridinum dications (i.e., viologens). These compounds undergo photoinduced luminescence quenching upon exposure to UV radiation. This reactivity is concurrent with two phenomena: radicalization of the uranyl tetrachloride anion and photoelectron transfer to the viologen which constitutes the formal transfer of one electron from [UO2Cl4]2- to the viologen species. This behavior is elucidated using electron paramagnetic resonance (EPR) spectroscopy and further probed through a series of characterization and computational techniques including Rehm-Weller analysis, time-dependent density functional theory (TD-DFT), and density of states (DOS). This work provides a systematic study of the photoreactivity of the uranyl unit in the solid state, an under-described aspect of fundamental uranyl chemistry.

4.
Angew Chem Int Ed Engl ; 63(21): e202400379, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38530229

RESUMO

U(VI) peroxide phases (studtite and meta-studtite) are found throughout the nuclear fuel cycle and exist as corrosion products in high radiation fields. Peroxides are part of a family of reactive oxygen species (ROS) that include hydroperoxyl and superoxide species and are produced during alpha radiolysis of water. While U(VI) peroxides have been thoroughly investigated, the incorporation and stability of ROS species within studtite have not been validated. In the current study, electron paramagnetic resonance (EPR) spectroscopy was used to identify the presence of free radicals within a series of U(VI) peroxide samples containing depleted, highly enriched, and natural uranium. Density functional theory calculations indicated that the predicted EPR signals matched well with a superoxide (O2 -⋅) species incorporated into the studtite structure, confirming the presence of ROS in the material. Further analysis of samples that were synthesized between 1945 and 2023 indicated that there is a correlation between the radical signal and the product of specific activity multiplied by age of the sample.

5.
Chemistry ; 29(64): e202302653, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37616378

RESUMO

Developing an atomistic understanding of ionizing radiation induced changes to organic materials is necessary for intentional design of greener and more sustainable materials for radiation shielding and detection. Cocrystals are promising for these purposes, but a detailed understanding of how the specific intermolecular interactions within the lattice upon exposure to radiation affect the structural stability of the organic crystalline material is unknown. This study evaluates atomistic-level effects of γ radiation on both single- and multicomponent organic crystalline materials and how specific noncovalent interactions and packing within the crystalline lattice enhance structural stability. Dose studies were performed on all crystalline systems and evaluated via experimental and computational methods. Changes in crystallinity were evaluated by p-XRD and free radical formation was analyzed via EPR spectroscopy. Type of intermolecular interactions and packing within the crystal lattice was delineated and related to the specific free radical species formed and the structural integrity of each material. Periodic DFT and HOMO-LUMO surface mapping calculations provided atomistic-level identifications of the most probable sites for the radicals formed upon exposure to γ radiation and relate intermolecular interactions and molecular packing within the crystalline lattice to experimental results.

6.
Langmuir ; 39(51): 18899-18908, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38081592

RESUMO

Water behavior under nanoconfinement varies significantly from that in the bulk but also depends on the nature of the pore walls. Hybrid compound offers the ideal system to explore water behavior in complex materials, so a model metal-organic nanotube (UMONT) material was utilized to explore the behavior of water between 100 and 293 K. Single-crystal X-ray and neutron diffraction revealed the formation of a filled Ice-I arrangement that was previously predicted to only occur under high pressures. 17O NMR spectra suggest that the onset of melting for the water in the UMONT channels occurs at 98 K and the presence of ice-like water up to 293 K, indicating that the complete ice-water transition does not occur before dehydration of the material. Overall, the water behavior differs significantly from hydrophobic single-walled carbon nanotubes indicating precise control over water can be achieved through rational design of hybrid materials.

7.
Inorg Chem ; 62(35): 14318-14325, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37610833

RESUMO

A significant number of solid-state [UO2Cl4]2- coordination compounds have been synthesized and structurally characterized. Yet, despite their purposive relative abundance in aqueous solutions, characterization of aquachlorouranium(VI) complexes remain rare. In the current study, a solid-state uranyl aqua chloro complex ((C4H12N2)2[UO2Cl4(H2O)]Cl2) was synthesized using piperazinium as a charge-balancing ligand, and the structure was determined using single-crystal X-ray diffraction. Using periodic density functional theory, the electronic structure of the [UO2Cl4(H2O)]2- complex was compared to [UO2Cl4]2- to uncover the strengthening of the U═O bond in [UO2Cl4(H2O)]2-. Changes in the strength of the U═O bond were validated further with Raman and IR spectroscopy, where uranyl symmetrical (ν1) and asymmetrical (ν3) stretches were blue-shifted compared to the reference [UO2Cl4]2- complex. Furthermore, the formation energy of the solid-state (C4H12N2)2[UO2Cl4(H2O)]Cl2 complex was calculated to be -287.60 ± 1.75 kJ mol-1 using isothermal acid calorimetry. The demonstrated higher stability relative to the related [UO2Cl4]2- complex was related to the relative stoichiometry of the counterions.

8.
Inorg Chem ; 62(1): 372-380, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36538814

RESUMO

Solid-state uranyl hybrid structures are often formed through unique intermolecular interactions occurring between a molecular uranyl anion and a charge-balancing cation. In this work, solid-state structures of the uranyl tetrachloride anion engaged in uranyl-cation and uranyl-hydrogen interactions were studied using density functional theory (DFT). As most first-principles methods used for systems of this type focus primarily on the molecular structure, we present an extensive benchmarking study to understand the methods needed to accurately model the geometric properties of these systems. From there, the electronic and vibrational structures of the compounds were investigated through projected density of states and phonon analysis and compared to the experiment. Lastly, we present a DFT + thermodynamics approach to calculate the formation enthalpies (ΔHf) of these systems to directly relate to experimental values. Through this methodology, we were able to accurately capture trends observed in experimental results and saw good quantitative agreement in predicted ΔHf compared to the value calculated through referencing each structure to its standard state. Overall, results from this work will be used for future combined experimental and computational studies on both uranyl and neptunyl hybrid structures to delineate how varying intermolecular interaction strengths relates to the overall values of ΔHf.

9.
Inorg Chem ; 62(15): 6055-6064, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000037

RESUMO

Neptunium makes up the largest percentage of minor actinides found in spent nuclear fuel, yet separations of this element have proven difficult due to its rich redox chemistry. Developing new reprocessing techniques should rely on understanding how to control the Np oxidation state and its interactions with different ligands. Designing new ligands for separations requires understanding how to properly tune a system toward a desired trait through functionalization. Emerging technologies for minor actinide separations focus on ligands containing carboxylate or pyridine functional groups, which are desirable due to their high degree of functionalization. Here, we use DFT calculations to study the interactions of carboxylate and polypyridine ligands with the neptunyl cation [Np(V/VI)O2]+/2+. A systematic study is performed by varying the electronic properties of the carboxylate and polypyridine ligands through the inclusion of different electron-withdrawing and electron-donating R groups. We focus on how these groups can affect geometric properties, electronic structure, and bonding characterization as a function of the metal oxidation state and ligand character and discuss how these factors can play a role in neptunium ligand design principles.

10.
Inorg Chem ; 62(42): 17265-17275, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37816161

RESUMO

Noncovalent interactions (NCIs) can influence the stability and chemical properties of pentavalent and hexavalent actinyl (AnO2+/2+) compounds. In this work, the impact of NCIs (actinyl-hydrogen and actinyl-cation interactions) on the enthalpy of formation (ΔHf) and vibrational features was evaluated using Np(VI) tetrachloro compounds as the model system. We calculated the ΔHf values of these solid-state compounds through density functional theory+ thermodynamics (DFT+ T) and validated the results against experimental ΔHf values obtained through isothermal acid calorimetry. Three structural descriptors were evaluated to develop predictors for ΔHf, finding a strong link between ΔHf and hydrogen bond energy (EHtotal) for neptunyl-hydrogen interactions and total electrostatic attraction energy (Eelectrostatictotal) for neptunyl-cation interactions. Finally, we used Raman spectroscopy together with bond order analysis to probe Np=O bond perturbation due to NCIs. Our results showed a strong correlation between the degree of NCIs by axial oxygen and red-shifting of Np=O symmetrical stretch (ν1) wavenumbers and quantitatively demonstrated that NCIs can weaken the Np=O bond. These properties were then compared to those of related U(VI) and Np(V) phases to evaluate the effects of subtle differences in the NCIs and overall properties. In general, the outcomes of our study demonstrated the role of NCIs in stabilizing actinyl solid materials, which consequently governs their thermochemical behaviors and vibrational signatures.

11.
Inorg Chem ; 62(40): 16564-16573, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37768147

RESUMO

The ternary oxides, Li2NpO4 and Li4NpO5, were synthesized under mild hydrothermal conditions using concentrated LiOH solutions containing NpO2(NO3)2. The reactions resulted in the formation of single crystals of both compounds, enabling the determination of their single crystal structures for the first time. Exploration of the synthetic phase space demonstrates that the resulting neptunate phases are dependent on the concentration of LiOH, transitioning from Li2NpO4, containing a typical octahedral neptunyl geometry with two shorter Np≡O bonds, at lower LiOH concentrations to Li4NpO5 with two long and four short Np-O bonds under saturated solution conditions. Reactions exploring the same synthetic conditions are also reported for uranyl(VI) for comparison. Raman spectra of the compounds were collected and analyzed to evaluate the Np-O bonding in these compounds.

12.
Environ Sci Technol ; 57(1): 255-265, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525634

RESUMO

We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.


Assuntos
Arseniatos , Solubilidade , Termodinâmica
13.
Eur J Inorg Chem ; 26(11)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37377727

RESUMO

Amidoximated absorbents (AO-PAN) effectively remove U(VI) from aqueous solution, but previous studies reported more variability for complex natural waters that contain additional confounding ions and molecules. Ternary phases containing U(VI), M(III) (M = Fe(III), Al(III), Ga(III)), and organic molecules exist under these conditions and cause heterogeneous U(VI) uptake on AO-PAN. The goal of the current study is to provide additional insights into the structural features ternary complexes using N-(2-hydroxyethyl)-iminodiacetic acid (HEIDI) as the model organic chelator and explore the relevance of these species on U(VI) capture. Three model compounds ([(UO2)(Fe)2(µ3-O)(C6NO5H8)2(H2O)4] (UFe2), ([(UO2)(Al)2(µ2-OH)(C6NO5H8)2(H2O)3] (UAl2) and [(UO2)(Ga)2(µ2-OH)(C6NO5H8)2(H2O)3] (UGa2)) were characterized by single-crystal X-ray diffraction. Raman spectra of the model compounds were compared with solution data and the ternary phases were noted in the case of Al(III) and Ga(III), but not in the Fe(III) system. U(VI) adsorption onto AO-PAN was not impacted by the presence of HEIDI or the trivalent metal species.

14.
Angew Chem Int Ed Engl ; 62(33): e202305073, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37177866

RESUMO

Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [ E H , norm total ${{E}_{H,{\rm { norm}}}^{{\rm { total}}}}$ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation between E H , norm total ${E_{{\rm{H}},{\rm{norm}}}^{{\rm{total}}} }$ and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.

15.
Langmuir ; 38(46): 14025-14035, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36343277

RESUMO

The confinement-dependent properties of solvents, particularly water, within nanoporous spaces impart unique physical and chemical behavior compared to those of the bulk. This has previously been demonstrated for a U(VI)-based metal organic nanotube that displays ice-like arrays of water molecules within the 1-D pore space and complete selectivity to H2O over all other solvents and isotopologues. Based upon our previous work on D2O and HTO adsorption processes, we suggested that the water uptake was controlled by a two-step process: (1) surface adsorption via hydrogen bonding to hydrophilic amine and carboxylic groups and (2) diffusion of the water into the hydrophobic 1-D nanochannels. The current study seeks to evaluate this hypothesis and expand our existing kinetic model for the water diffusion step to account for the initial surface adsorption process. Vapor sorption experiments, paired with thermogravimetric and Fourier-transform infrared analyses, yielded uptake data that were fit using a Langmuir model for the surface-adsorption step of the mechanism. The water adsorption curve was designated a type IV Brunauer-Emmett-Teller isotherm, which indicated that our original hypothesis was correct. Additional work with binary solvent systems enabled us to evaluate the uptake in a range of conditions and determine that the uptake is not controlled by the vapor pressure but is instead completely dependent on the relative humidity of the system.

16.
Inorg Chem ; 61(38): 15023-15036, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36099332

RESUMO

Hydrogen bonding networks within hexavalent uranium materials are complex and may influence the overall physical and chemical properties of the system. This is particularly true if hydrogen bonding takes places between the donor and the oxo group associated with the uranyl cation (UO22+). In the current study, we evaluate the impact of charge-assisted hydrogen bonding on the vibrational modes of the uranyl cation using uranyl tricarbonate [UO2(CO3)3]4- interactions with [Co(NH3)6]3+ as the model system. Herein, we report the synthesis and structural characterization of five novel compounds, [Co(NH3)6]Cl(CO3) (Co_Cl_CO3), [Co(NH3)6]4[UO2(CO3)3]3(H2O)11.67 (Co4U3), [Co(NH3)6]3[UO2(CO3)3]2Cl (H2O)7.5 (Co3U2_Cl), [Co(NH3)6]2[UO2(CO3)3]Cl2 (Co2U_Cl), and [Co(NH3)6]2[UO2(CO3)3]CO3 (Co2U_CO3), which contain differences in the crystalline packing and extended hydrogen bonding networks. We show that these slight changes in the supramolecular assembly and hydrogen bonding networks result in the modification of modes as observed by infrared and Raman spectroscopy. We use density functional theory calculations to assign the vibrational modes and provide an understanding about how uranyl bond perturbation and changes in hydrogen bonding interactions can impact the resulting spectroscopic signals.

17.
Environ Sci Technol ; 55(23): 16246-16256, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797046

RESUMO

We investigated interfacial reactions of U(VI) in the presence of Suwannee River natural organic matter (NOM) at acidic and neutral pH. Laboratory batch experiments show that the adsorption and precipitation of U(VI) in the presence of NOM occur at pH 2 and pH 4, while the aqueous complexation of U by dissolved organic matter is favored at pH 7, preventing its precipitation. Spectroscopic analyses indicate that U(VI) is mainly adsorbed to the particulate organic matter at pH 4. However, U(VI)-bearing ultrafine to nanocrystalline solids were identified at pH 4 by electron microscopy. This study shows the promotion of U(VI) precipitation by NOM at low pH which may be relevant to the formation of mineralized deposits, radioactive waste repositories, wetlands, and other U- and organic-rich environmental systems.


Assuntos
Resíduos Radioativos , Urânio , Adsorção , Matéria Orgânica Dissolvida , Concentração de Íons de Hidrogênio , Urânio/análise
18.
J Chem Phys ; 154(6): 064303, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588534

RESUMO

Polyaluminum cations, such as the MAl12 Keggin, undergo atomic substitutions at the heteroatom site (M), where nanoclusters with M = Al3+, Ga3+, and Ge4+ have been experimentally studied. The identity of the heteroatom M has been shown to influence the structural and electronic properties of the nanocluster and the kinetics of ligand exchange reactions. To date, only three ε-analogs have been identified, and there is a need for a predictive model to guide experiment to the discovery of new MAl12 species. Here, we present a density functional theory (DFT) and thermodynamics approach to predicting favorable heteroatom substitution reactions, alongside structural analyses on hypothetical ε-MAl12 nanocluster models. We delineate trends in energetics and geometry based on heteroatom cation properties, finding that Al3+-O bond lengths are related to heteroatom cation size, charge, and speciation. Our analyses also enable us to identify potentially isolable new ε-MAl12 species, such as FeAl12 7+. Based upon these results, we evaluated the Al3+/Zn2+/Cr3+ system and determined that substitution of Cr3+ is unfavorable in the heteroatom site but is preferred for Zn2+, in agreement with the experimental structures. Complimentary experimental studies resulted in the isolation of Cr3+-substituted δ-Keggin species where Cr3+ substitution occurs only in the octahedral positions. The isolated structures Na[AlO4Al9.6Cr2.4(OH)24(H2O)12](2,6-NDS)4(H2O)22 (δ-CrnAl13-n-1) and Na[AlO4Al9.5Cr2.5(OH)24(H2O)12](2,7-NDS)4(H2O)18.5 (δ-CrnAl13-n-2) are the first pieces of evidence of mixed Al3+/Cr3+ Keggin-type nanoclusters that prefer substitution at the octahedral sites. The δ-CrnAl13-n-2 structure also exhibits a unique placement of the bound Na+ cation, which may indicate that Cr3+ substitution can alter the surface reactivity of Keggin-type species.

19.
Angew Chem Int Ed Engl ; 60(16): 8755-8759, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33482020

RESUMO

Keggin-type polyaluminum cations belong to a unique class of compounds with their large positive charge, hydroxo bridges, and divergent isomerization/oligomerization. Previous reports indicated that oligomerization of this species can only occur through one isomer (δ), but herein we report the isolation of largest Keggin-type cluster that occurs through self-condensation of four ϵ-isomers ϵ-GeAl12 8+ to form [Ge4 O16 Al48 (OH)108 (H2 O)24 ]20+ cluster (Ge4 Al48 ). The cluster was crystallized and structurally characterized by single-crystal X-ray diffraction (SCXRD) and the elemental composition was confirmed by ICP-MS and SEM-EDS. Additional dynamic light scattering experiments confirms the presence of the Ge4 Al48 in thermally aged solutions. DFT calculations reveal that a single atom Ge substitution in tetrahedral site of ϵ-isomer is the key for the formation of Ge4 Al48 because it activates deprotonation at key surface sites that control the self-condensation process.

20.
Angew Chem Int Ed Engl ; 60(27): 15041-15048, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33852757

RESUMO

The high radiation field associated with spent nuclear fuel (UIV O2 ) pellets produces an array of reactive radical species that impact the corrosion and formation of secondary alteration phases. Dioxygen radicals are important as radiolysis products, but the interaction between these reactive oxygen species and UVI O22+ and its effects on the resultant alteration phases is unclear. We report the first example of a UVI superoxide compound and explore its reactivity in the environments relevant to the storage of spent nuclear fuel. We utilized X-ray diffraction and Raman scattering techniques to demonstrate that the uranyl superoxide reacts with CO2 in air to afford a mixed uranyl peroxide/carbonate within 3 days, both in solution and under atmospheric conditions. An additional transformation occurs over the course of 3 months to form a potassium UVI carbonate (grimselite), which also occurs as an alteration product on Chernobyl corium. Our results demonstrate the presence and significance of the superoxide anion in the alteration of spent nuclear fuel and indicate the impact of uranyl superoxide chemistry on high prevalence of carbonate in the secondary phases of spent nuclear fuel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA