Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 85(2): 226-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225022

RESUMO

There is a therapeutic need for glucocorticoid receptor (GR) ligands that distinguish between the transrepression and transactivation activity of the GR, the later thought to be responsible for side effects. These ligands are known as "dissociated glucocorticoids" (dGCs). The first published dGCs, RU24782 (9α-fluoro-11ß-hydroxy-16α-methylpregna-21-thiomethyl-1,4-diene-3,20-dione) and RU24858 (9α-fluoro-11ß-hydroxy-16α-methylpregna-21-cyanide-1,4-diene-3,20-dione), do not have the 17α-hydroxyl group that characterizes dexamethasone (Dex; 9α-fluoro-11ß,17α,21-trihydroxy-16α-methylpregna-1,4-diene-3,20-dione), and they differ from one another by having C21-thiomethyl and C21-cyanide moieties, respectively. Our aim was therefore to establish the structural basis of their activity. Both RU24782 and RU24858 induced a transactivation activity highly dependent on the GR expression level but always lower than dexamethasone. They also display less ability than dexamethasone to trigger steroid receptor coactivator 1 (SRC-1) recruitment and histone H3 acetylation. Docking studies, validated by mutagenesis experiments, revealed that dGCs are not anchored by Gln642, in contrast to Dex, which is hydrogen bonded to this residue via its 17α-hydroxyl group. This contact is essential for SRC-1 recruitment and subsequent dexamethasone-induced GR transactivation, but not transrepression. The ability of dGCs to make contacts with Ile747, for both RU24858 and RU24782 and with Asn564 for RU24858 are not strong enough to maintain GR in a conformation able to efficiently recruit SRC-1, unless SRC-1 is overexpressed. Overall, our findings provide some structural guidelines for the synthesis of potential new dissociated glucocorticoids with a better therapeutic ratio.


Assuntos
Glucocorticoides/farmacologia , Receptores de Glucocorticoides/genética , Ativação Transcricional/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Dexametasona/farmacologia , Glucocorticoides/química , Glucocorticoides/metabolismo , Humanos , Coativador 1 de Receptor Nuclear/fisiologia , Regiões Promotoras Genéticas , Conformação Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética
2.
Stem Cells ; 31(4): 641-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23355370

RESUMO

Melanoma is one of the most aggressive and extremely resistant to conventional therapies neoplasms. Recently, cellular resistance was linked to the cancer stem cell phenotype, still controversial and not well-defined. In this study, we used a Rhodamine 123 (Rh123) exclusion assay to functionally identify stem-like cells in metastatic human melanomas and melanoma cell lines. We demonstrate that a small subset of Rh123-low-retention (Rh123(low)) cells is enriched for stem cell-like activities, including the ability to self-renew and produce nonstem Rh123(high) progeny and to form melanospheres, recapitulating the phenotypic profile of the parental tumor. Rh123(low) cells are relatively quiescent and chemoresistant. At the molecular level, we show that melanoma Rh123(low) cells overexpress HIF1α, pluripotency factor OCT4, and the ABCB5 marker of melanoma stem cells and downregulate the expression of Cyclin D1 and CDK4. Interestingly, a short treatment with LY294002, an inhibitor of the PI3K/AKT pathway, specifically reverts a subset of Rh123(high) cells to the Rh123(low) phenotype, whereas treatment with inhibitors of mammalian target of rapamycin, phosphatase and tensin homolog or mitogen-activated protein kinase signaling does not. This phenotypic switching was associated with reduced levels of the HIF1α transcript and an increase in the level of phosphorylated nuclear FOXO3a preferentially in Rh123(low) cells. Moreover, the Rh123(low) cells became less quiescent and displayed a significant increase in their melanosphere-forming ability. All the above indicates that the Rh123(low) melanoma stem cell pool is composed of cycling and quiescent cells and that the PI3K/AKT signaling while maintaining the quiescence of Rh123(low) G0 cells promotes the exit of cycling cells from the stem cell compartment.


Assuntos
Melanoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rodamina 123/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/farmacologia , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Morfolinas/farmacologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
3.
Cell Commun Signal ; 12: 52, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25223735

RESUMO

BACKGROUND: It is well established that inflammation promotes cancer, including melanoma, although the exact mechanisms involved are less known. In this study, we tested the hypothesis that inflammatory factors affect the cancer stem cell (CSC) compartment responsible for tumor development and relapse. RESULTS: Using an inducible histone 2B-GFP fusion protein as a tracer of cell divisional history, we determined that tumor necrosis factor (TNF), which is a classical pro-inflammatory cytokine, enlarged the CSC pool of GFP-positive label-retaining cells (LRCs) in tumor-like melanospheres. Although these cells acquired melanoma stem cell markers, including ABCB5 and CD271, and self-renewal ability, they lost their capacity to differentiate, as evidenced by the diminished MelanA expression in melanosphere cells and the loss of pigmentation in a skin equivalent model of human melanoma. The undifferentiated cell phenotype could be reversed by LY294002, which is an inhibitor of the PI3K/AKT signaling pathway, and this reversal was accompanied by a significant reduction in CSC phenotypic markers and functional properties. Importantly, the changes induced by a transient exposure to TNF were long-lasting and observed for many generations after TNF withdrawal. CONCLUSIONS: We conclude that pro-inflammatory TNF targets the quiescent/slow-cycling melanoma SC compartment and promotes PI3K/AKT-driven expansion of melanoma SCs most likely by preventing their asymmetrical self-renewal. This TNF effect is maintained and transferred to descendants of LRC CSCs and is manifested in the absence of TNF, suggesting that a transient exposure to inflammatory factors imprints long-lasting molecular and/or cellular changes with functional consequences long after inflammatory signal suppression. Clinically, these results may translate into an inflammation-triggered accumulation of quiescent/slow-cycling CSCs and a post-inflammatory onset of an aggressive tumor.


Assuntos
Melanoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Fibroblastos , Humanos , Queratinócitos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/metabolismo
4.
Mar Drugs ; 12(2): 779-98, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24473175

RESUMO

Lamellarin D (LamD) is a marine alkaloid with broad spectrum antitumor activities. Multiple intracellular targets of LamD, which affect cancer cell growth and induce apoptosis, have been identified. These include nuclear topoisomerase I, relevant kinases (such as cyclin-dependent kinase 2) and the mitochondrial electron transport chain. While we have previously demonstrated that LamD at micromolar range deploys strong cytotoxicity by inducing mitochondrial apoptosis, mechanisms of its cytostatic effect have not yet been characterized. Here, we demonstrated that induction of cellular senescence (depicted by cell cycle arrest in G2 associated with ß-galactosidase activity) is a common response to subtoxic concentrations of LamD. Cellular senescence is observed in a large panel of cancer cells following in vitro or in vivo exposure to LamD. The onset of cellular senescence is dependent on the presence of intact topoisomerase I since topoisomerase I-mutated cells are resistant to senescence induced by LamD. LamD-induced senescence occurs without important loss of telomere integrity. Instead, incubation with LamD results in the production of intracellular reactive oxygen species (ROS), which are critical for senescence as demonstrated by the inhibitory effect of antioxidants. In addition, cancer cells lacking mitochondrial DNA also exhibit cellular senescence upon LamD exposure indicating that LamD can trigger senescence, unlike apoptosis, in the absence of functional mitochondria. Overall, our results identify senescence-associated growth arrest as a powerful effect of LamD and add compelling evidence for the pharmacological interest of lamellarins as potential anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Cumarínicos/farmacologia , DNA Topoisomerases Tipo I/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/metabolismo , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Telômero/metabolismo , Inibidores da Topoisomerase/farmacologia
6.
Apoptosis ; 17(4): 364-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22127645

RESUMO

F14512, an epipodophyllotoxin derivative equipped with a spermine moiety, is selectively taken up by the polyamine transport system over-active in tumor cells. F14512 was identified as a selective anticancer agent with a broad spectrum of antitumor activities and is currently undergoing phase I clinical trial in onco-hematology. However, the mechanism by which F14512 exerts its selective effects on neoplastic cells remains poorly understood. In this study, using mainly P388 leukemia cells, we showed that activation of the DNA damage response by F14512 did not induce immediate apoptosis but resulted in an early growth arrest. F14512-induced G2 arrest was accompanied by the appearance of a senescence-like phenotype (characterized by an increased ß-galactosidase staining) with up-regulation of the cyclin-dependent kinase inhibitor p16, and cyclin D1. The early senescence-based cell cycle block was characterized by a marked increase of the level of the IAP protein survivin, but not cIAP2, in P388 cells as well as in three other leukemia and melanoma cell types. The Thr(34)-phosphorylated form of survivin was observed within 4 h after F14512 exposure. Inhibition of survivin by siRNA resulted in a switch from senescence-like growth arrest to apoptosis. Compared with the parental drug etoposide, F14512-induced DNA damage signaling pathway resulted in greater senescence like-growth arrest and delayed apoptosis. Collectively, our data show that senescence arrest and subsequent apoptosis are powerful mechanisms mediating the chemotherapeutic effects of F14512 and identify survivin as the molecular determinant responsible for a qualitative shift in cell fate from senescence to apoptosis upon treatment with F14512.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/metabolismo , Podofilotoxina/análogos & derivados , Proteínas Repressoras/metabolismo , Inibidores da Topoisomerase II/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/fisiopatologia , Podofilotoxina/farmacologia , Proteínas Repressoras/genética , Survivina
7.
Apoptosis ; 15(7): 769-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20151196

RESUMO

Lamellarin D (Lam D), a marine alkaloid, exhibits a potent cytotoxicity against many different tumors. The pro-apoptotic function of Lam D has been attributed to its direct induction of mitochondrial permeability transition (MPT). This study was undertaken to explore the mechanisms through which Lam D promotes changes in mitochondrial function and as a result apoptosis. The use of eight Lam derivatives provides useful structure-apoptosis relationships. We demonstrate that Lam D and structural analogues induce apoptosis of cancer cells by acting directly on mitochondria inducing reduction of mitochondrial membrane potential, swelling and cytochrome c release. Cyclosporin A, a well-known inhibitor of MPT, completely prevents mitochondrial signs of apoptosis. The drug decreases calcium uptake by mitochondria but not by microsomes indicating that Lam D-dependent permeability is specific to mitochondrial membranes. In addition, upon Lam D exposure, a rapid decline of mitochondrial respiration and ATP synthesis occurs in isolated mitochondria as well as in intact cells. Evaluation of the site of action of Lam D on the electron-transport chain revealed that the activity of respiratory chain complex III is reduced by a half. To determine whether Lam D could induce MPT-dependent apoptosis by inhibiting mitochondrial respiration, we generated respiration-deficient cells (rho0) derived from human melanoma cells. In comparison to parental cells, rho0 cells are totally resistant to the induction of MPT-dependent apoptosis by Lam D. Our results indicate that functional mitochondria are required for Lam D-induced apoptosis. Inhibition of mitochondrial respiration is responsible for MPT-dependent apoptosis of cancer cells induced by Lam-D.


Assuntos
Antineoplásicos/toxicidade , Apoptose , Cumarínicos/toxicidade , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Isoquinolinas/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Cumarínicos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Isoquinolinas/química , Células Jurkat , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Consumo de Oxigênio/efeitos dos fármacos , Ratos
8.
Exp Dermatol ; 19(10): 929-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20849536

RESUMO

Recently, human embryonic stem cells have been differentiated in vitro into functional epidermal keratinocytes. Here, we demonstrated that these cells can be generated also from non-embryonic, human umbilical cord blood (hUCB) cells that have the potential to differentiate into cells of non-hematopoietic lineage. Human UCB mono-nucleated cells were cultivated in monolayer and in three-dimensional skin equivalent cultures and assayed for the presence of phenotype-specific markers. Our results determined that after one month of culturing in serum containing medium, the hUCB cells produced morphologically homogeneous colonies of epithelial cells expressing keratinocyte-specific markers. They also formed stratified epidermis in organ cultures that contained sporadic CD1a-positive cells within the accurate strata. We concluded that hUCB cells have the capacity to differentiate into functional epidermal keratinocytes and may serve as a source of high-quality keratinocytes for clinical applications.


Assuntos
Células Epidérmicas , Sangue Fetal/citologia , Queratinócitos/citologia , Células-Tronco/citologia , Diferenciação Celular , Células Cultivadas , Humanos , Técnicas de Cultura de Órgãos
9.
J Cell Mol Med ; 13(7): 1321-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18466357

RESUMO

The death of dendritic cells (DCs) can potentially influence immune responses by affecting the duration of DC stimulation of lymphocytes. Here, we report that cultured mature monocyte-derived DCs manifest early mitochondrial damage (i.e. within 24 hrs), characterized by mitochondrial membrane potential (psi Delta m) disruption and mitochondrial release of pro-apoptotic factors, followed by reactive oxygen species (ROS) production and activation of caspases. Afterwards, DCs with mitochondrial alterations are condemned to undergo apoptosis and necrosis. Macroarray analysis results (validated by real time quantitative-PCR (QRT-PCR) and immunoblotting), showed up-regulation of the pro-apoptotic member of the Bcl-2 family, Bim, while expression of several anti-apoptotic molecules was down-regulated. Importantly, pre-apoptotic DCs (characterized by a low Delta psi m) showed a modified phenotype, with down-regulation of HLA-DR and of the co-stimulatory molecules CD80 and CD86. Moreover, sorted viable low psi Delta m DCs were unable to activate allogeneic T cells, indicating that pre-apoptotic DCs have already lost some of their immuno-stimulatory capabilities long before any detectable signs of death occur. Perturbations to mitochondrial respiration with rotenone identified the same modifications to DC immune functions. These data indicate a strong requirement for mitochondrial integrity for the immuno-stimulatory capacities of DC. Determining Delta psi m could be a useful parameter to select 'fully' functional DCs for anti-tumour vaccines.


Assuntos
Apoptose , Células Dendríticas/citologia , Células Dendríticas/imunologia , Imunização , Mitocôndrias/patologia , Monócitos/citologia , Monócitos/imunologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/enzimologia , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Fenótipo , Rotenona/farmacologia
10.
Exp Dermatol ; 17(2): 125-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18177350

RESUMO

Pro- and anti-apoptotic members of the Bcl-2 family are fundamental in the control of apoptosis. Among them, Bax plays a key role in apoptosis induction by mediating the release of apoptogenic factors from mitochondria to the cytosol. In this report, we investigated, by immunohistofluorescence, the in vivo distribution of Bax in normal human epidermis before and 24 h after exposure to solar-simulated radiation. Bax expression was evaluated with three different, Western blot pretested, anti-Bax antibodies (Ab) and correlated with markers of keratinocyte differentiation and apoptosis using anti-beta(1) integrin and anti-active caspase-3 Abs respectively. Using anti-Bax N20 and A-3533 polyclonal Ab, we found that, whereas undifferentiated keratinocytes of the basal proliferative compartment contained Bax in the cytosol, the differentiated suprabasal cells had Bax mainly in the nucleus. This immunoreactivity pattern was not modified by skin irradiation. Interestingly, the well known apoptosis-related Bax redistribution to mitochondria in response to a cell death signal, could be detected only with yet another, the 2D2 monoclonal Ab. This relocalization occurred specifically in apoptotic, active caspase-3 positive cells of irradiated epidermis. Our data highlight the differentiation- and apoptosis-associated changes in the pattern of Bax subcellular and cellular distribution as uncovered by different anti-Bax Abs and suggest that Bax undergoes successive activation that progresses in parallel with keratinocyte differentiation and apoptosis.


Assuntos
Apoptose/efeitos da radiação , Epiderme/metabolismo , Epiderme/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Raios Ultravioleta , Proteína X Associada a bcl-2/metabolismo , Anticorpos Anti-Idiotípicos/imunologia , Anticorpos Anti-Idiotípicos/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Biópsia , Caspase 3/metabolismo , Diferenciação Celular/efeitos da radiação , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Epiderme/efeitos da radiação , Humanos , Queratinócitos/efeitos da radiação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos da radiação , Proteína X Associada a bcl-2/imunologia
11.
Biol Cell ; 99(6): 323-32, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17352692

RESUMO

BACKGROUND INFORMATION: The nuclear gene hSUV3 (human SUV3) encodes an ATP-dependent DNA/RNA helicase. In the yeast Saccharomyces cerevisiae the orthologous Suv3 protein is localized in mitochondria, and is a subunit of the degradosome complex which regulates RNA surveillance and turnover. In contrast, the functions of human SUV3 are not known to date. RESULTS: In the present study, we show that a fraction of human SUV3 helicase is localized in the nucleus. Using small interfering RNA gene silencing in HeLa cells, we demonstrate that down-regulation of hSUV3 results in cell cycle perturbations and in apoptosis, which is both AIF- and caspase-dependent, and proceeds with the induction of p53. CONCLUSIONS: In addition to its mitochondrial localization, human SUV3 plays an important role in the nucleus and is probably involved in chromatin maintenance.


Assuntos
Fator de Indução de Apoptose/metabolismo , Apoptose , Caspases/metabolismo , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Regulação para Baixo/genética , Ciclo Celular , Núcleo Celular/enzimologia , RNA Helicases DEAD-box/metabolismo , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , Mitocôndrias/enzimologia , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
J Leukoc Biol ; 81(5): 1179-87, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17311933

RESUMO

Mild heat stress can modulate the activities of immune cells, including dendritic cells (DC) and theoretically, would constitute an innovative approach capable of enhancing the antitumor functions of DC. Therefore, we tested the effects of mild heat stress on the physiology and viability of human monocyte-derived DC, the major type of DC used in tumor immunotherapy trials. We first designed a heat-stress protocol consisting of repetitive, sublethal heat shocks throughout the generation of DC. Using this protocol, we observed that heat stress did not perturb the morphology and the phenotype of immature or mature DC or the capacities of immature DC to uptake antigens efficiently. It is noteworthy that in response to heat stress, mature DC produced higher levels of IL-12p70 and TNF-alpha, which are two cytokines involved in the stimulation of inflammatory reaction, whereas IL-10 production remained low. After heat-stress exposure, mature DC have the full ability to stimulate naive T cells with Th1 response polarization (high IFN-gamma and low IL-4 production) in an allogeneic MLR. It is interesting that heat stress enhanced the migratory capacities of DC in response to MIP-3beta/CCL19. Finally, heat stress partly protected DC from apoptosis induced by cytokine withdrawal. Overall, these findings validate the feasibility of improving immune response by heating human monocyte-derived DC and provide a strong rationale for using mild heat stress in combination with DC vaccination to increase antitumor response.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Resposta ao Choque Térmico/imunologia , Imunoterapia , Monócitos/imunologia , Apoptose/imunologia , Movimento Celular/imunologia , Sobrevivência Celular/imunologia , Quimiocina CCL19 , Quimiocinas CC/imunologia , Humanos , Interleucina-12/metabolismo , Lipopolissacarídeos/farmacologia , Fenótipo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Mol Cell Biol ; 22(13): 4522-34, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052862

RESUMO

Retinoids exhibit antineoplastic activities that may be linked to retinoid receptor-mediated transrepression of activating protein 1 (AP1), a heterodimeric transcription factor composed of fos- and jun-related proteins. Here we show that transcriptional activation of an AP1-regulated gene through the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway (MAPK(ERK)) is characterized, in intact cells, by a switch from a fra2-junD dimer to a junD-fosB dimer loading on its promoter and by simultaneous recruitment of ERKs, CREB-binding protein (CBP), and RNA polymerase II. All-trans-retinoic acid (atRA) receptor (RAR) was tethered constitutively to the AP1 promoter. AP1 transrepression by retinoic acid was concomitant to glycogen synthase kinase 3 activation, negative regulation of junD hyperphosphorylation, and to decreased RNA polymerase II recruitment. Under these conditions, fra1 loading to the AP1 response element was strongly increased. Importantly, CBP and ERKs were excluded from the promoter in the presence of atRA. AP1 transrepression by retinoids was RAR and ligand dependent, but none of the functions required for RAR-mediated transactivation was necessary for AP1 transrepression. These results indicate that transrepressive effects of retinoids are mediated through a mechanism unrelated to transcriptional activation, involving the RAR-dependent control of transcription factors and cofactor assembly on AP1-regulated promoters.


Assuntos
MAP Quinase Quinase 4 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Receptores do Ácido Retinoico/metabolismo , Transativadores/metabolismo , Fator de Transcrição AP-1/metabolismo , Anisomicina/farmacologia , Proteína de Ligação a CREB , Proteínas Quinases Dependentes de Cálcio-Calmodulina/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , DNA/metabolismo , Dimerização , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Células HeLa/efeitos dos fármacos , Células HeLa/efeitos da radiação , Humanos , MAP Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/efeitos da radiação , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores do Ácido Retinoico/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Elementos de Resposta , Receptor alfa de Ácido Retinoico , Receptores X de Retinoides , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/genética , Fator de Transcrição AP-1/efeitos dos fármacos , Fator de Transcrição AP-1/genética , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Raios Ultravioleta
14.
Circulation ; 111(20): 2596-604, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15897345

RESUMO

BACKGROUND: Although most of the deleterious effects of sepsis-induced apoptosis have been attributed to increased lymphocyte cell death, caspase activation may directly alter cell function of different organ systems. We postulated that left ventricular (LV) cardiomyocyte caspase activation is directly involved in sepsis-induced heart contractile dysfunction. METHODS AND RESULTS: LV cardiomyocytes isolated 4 hours after rat treatment with endotoxin injection (10 mg/kg) displayed major reductions in contractile reserve and myofilament response to Ca2+. Concomitantly, endotoxin also induced increases in LV cardiomyocyte caspase-3, -8, and -9-like activities, which were associated with sarcomeric structure destruction and cleavage of components of the cardiac myofilament. Interestingly, zVAD.fmk treatment of septic rat prevented LV cardiomyocyte contractile dysfunction, reductions in myofilament response to calcium, troponin T cleavage, and sarcomere destruction. Serum (10%) of endotoxin-treated rats induced contractile dysfunction, caspase-3-like activity increase, and troponin T cleavage of naive LV cardiomyocytes. The effects of septic serum were prevented in LV cardiomyocytes isolated from zVAD.fmk- or zDEVD.cmk-treated rats or LV cardiomyocytes preincubated with zVAD.fmk or zDEVD.cmk. CONCLUSIONS: The results show an important relationship between endotoxin-induced caspase activation and reduced contractile reserve and sarcomere disarray at the level of single LV cardiomyocytes.


Assuntos
Caspases/metabolismo , Endotoxinas/efeitos adversos , Cardiopatias/etiologia , Ventrículos do Coração/patologia , Miócitos Cardíacos/enzimologia , Sepse/fisiopatologia , Citoesqueleto de Actina/patologia , Animais , Cálcio/farmacologia , Cardiopatias/patologia , Ventrículos do Coração/enzimologia , Masculino , Contração Miocárdica , Ratos , Ratos Sprague-Dawley , Sarcômeros/patologia , Sepse/complicações , Sepse/patologia , Troponina T/metabolismo
15.
Nucleic Acids Res ; 31(22): 6640-50, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14602925

RESUMO

Hepatocyte Nuclear Factor 4alpha (HNF4alpha, NR2A1) is central to hepatocyte and pancreatic beta-cell functions. Along with retinoid X receptor alpha (RXRalpha), HNF4alpha belongs to the nuclear receptor subfamily 2 (NR2), characterised by a conserved arginyl residue and a glutamate residue insert in helix 7 (H7) of the ligand binding domain (LBD). Crystallographic studies indicate that R348 and E352 residues in RXRalpha H7 are involved in charge-driven interactions that improve dimerisation. Consistent with these findings, we showed that removing the charge of the corresponding residues in HNF4alpha H7, R258 and E262, impaired dimerisation in solution. Moreover, our results provide a new concept according to which helices of the HNF4alpha LBD dimerisation interface contribute differently to dimerisation required for DNA binding; unlike H9 and H10, H7 is not involved in DNA binding. Substitutions of E262 decreased the repression of HNF4alpha transcriptional activity by a dominant-negative HNF4alpha mutant, highlighting the importance of this residue for dimerisation in the cell context. The E262 insert is crucial for HNF4alpha function since its deletion abolished HNF4alpha transcriptional activity and coactivator recruitment. The glutamate residue insert and the conserved arginyl residue in H7 most probably represent a signature of the NR2 subfamily of nuclear receptors.


Assuntos
Proteínas de Ligação a DNA , Fosfoproteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica , Sequência de Aminoácidos , Arginina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Sítios de Ligação/genética , Linhagem Celular , DNA/metabolismo , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Ácido Glutâmico/genética , Células HeLa , Fator 4 Nuclear de Hepatócito , Humanos , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Elementos de Resposta/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Soluções , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
16.
Oncotarget ; 7(35): 56699-56712, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27527859

RESUMO

Our aim was to decipher the role and clinical relevance of the YAP/TAZ transcriptional coactivators in the regulation of the proliferation/quiescence balance in human colon cancer cells (CCC) and survival after 5FU-based chemotherapy. The prognostic value of YAP/TAZ on tumor relapse and overall survival was assessed in a five-year follow-up study using specimens of liver metastases (n = 70) from colon cancer patients. In 5FU-chemoresistant HT29-5F31 and -chemosensitive HCT116 and RKO CCC, a reversible G0 quiescent state mediated by Cyclin E1 down-regulation was induced by 5FU in 5F31 cells and recapitulated in CCC by either YAP/TAZ or Cyclin E1 siRNAs or the YAP inhibitor Verteporfin. Conversely, the constitutive active YAPdc-S127A mutant restricted cellular quiescence in 5FU-treated 5F31 cells and sustained high Cyclin E1 levels through CREB Ser-133 phosphorylation and activation. In colon cancer patients, high YAP/TAZ level in residual liver metastases correlated with the proliferation marker Ki-67 (p < 0.0001), high level of the YAP target CTGF (p = 0.01), shorter disease-free and overall survival (p = 0.008 and 0.04, respectively). By multivariate analysis and Cox regression model, the YAP/TAZ level was an independent factor of overall (Hazard ratio [CI 95%] 2.06 (1.02-4.16) p = 0.045) and disease-free survival (Hazard ratio [CI 95%] 1.98 (1.01-3.86) p = 0.045). Thus, YAP/ TAZ pathways contribute to the proliferation/quiescence switch during 5FU treatment according to the concerted regulation of Cyclin E1 and CREB. These findings provide a rationale for therapeutic interventions targeting these transcriptional regulators in patients with residual chemoresistant liver metastases expressing high YAP/TAZ levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias do Colo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclina E/metabolismo , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Recidiva Local de Neoplasia , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/metabolismo , Idoso , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Intervalo Livre de Doença , Fluoruracila/química , Seguimentos , Células HCT116 , Células HT29 , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Porfirinas/farmacologia , Prognóstico , Modelos de Riscos Proporcionais , Transativadores , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Verteporfina , Proteínas de Sinalização YAP
17.
Sci Rep ; 6: 30405, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465291

RESUMO

Metastatic cancer relapses following the reactivation of dormant, disseminated tumour cells; however, the cells and factors involved in this reactivation are just beginning to be identified. Using an immunotherapy-based syngeneic model of melanoma dormancy and GFP-labelled dormant cell-derived cell lines, we determined that vaccination against melanoma prevented tumour growth but did not prevent tumour cell dissemination or eliminate all tumour cells. The persistent disseminated melanoma tumour cells were quiescent and asymptomatic for one year. The quiescence/activation of these cells in vitro and the dormancy of melanoma in vivo appeared to be regulated by glucocorticoid-induced leucine zipper (GILZ)-mediated immunosuppression. GILZ expression was low in dormant cell-derived cultures, and re-expression of GILZ inactivated FOXO3A and its downstream target, p21CIP1. The ability of dormancy-competent cells to re-enter the cell cycle increased after a second round of cellular dormancy in vivo in association with shortened tumour dormancy period and faster and more aggressive melanoma relapse. Our data indicate that future cancer treatments should be adjusted according to the stage of disease progression.


Assuntos
Proteína Forkhead Box O3/genética , Melanoma/genética , Células-Tronco Neoplásicas/metabolismo , Fase de Repouso do Ciclo Celular/genética , Fatores de Transcrição/genética , Animais , Biomarcadores Tumorais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Humanos , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Prognóstico , Transdução de Sinais
18.
Oncogene ; 21(1): 65-77, 2002 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-11791177

RESUMO

Apoptosis, a tightly controlled multi-step mechanism of cell death, is important for anti-cancer therapy-based elimination of tumor cells. However, this process is not always efficient. Small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) cells display different susceptibility to undergo apoptosis induced by anticancer treatment. In contrast to SCLC, NSCLC cells are cross-resistant to a broad spectrum of apoptotic stimuli, including receptor stimulation, cytotoxic drugs and gamma-radiation. Since resistance of tumor cells to treatment often accounts for the failure of traditional forms of cancer therapy, in the present study attempts to find a potent broad-range apoptosis inductor, which can kill therapy-resistant NSCLC cells were undertaken and the mechanism of apoptosis induction by this drug was investigated in detail. We found that staurosporine (STS) had cell killing effect on both types of lung carcinomas. Release of cytochrome c, activation of apical and effector caspases followed by cleavage of their nuclear substrates and morphological changes specific for apoptosis were observed in STS-treated cells. In contrast to treatment with radiation or chemotherapy drugs, STS induces mitochondrial dysfunction followed by translocation of AIF into the nuclei. These events preceded the activation of nuclear apoptosis. Thus, in lung carcinomas two cell death pathways, caspase-dependent and caspase-independent, coexist. In NSCLC cells, where the caspase-dependent pathway is less efficient, the triggering of an AIF-mediated caspase-independent mechanism circumvents the resistance of these cells to treatment.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Flavoproteínas/fisiologia , Neoplasias Pulmonares/patologia , Proteínas de Membrana/fisiologia , Mitocôndrias/fisiologia , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/fisiologia , Apoptose/efeitos da radiação , Fator de Indução de Apoptose , Carcinoma de Células Pequenas/patologia , Caspase 3 , Caspase 7 , Caspases/biossíntese , Caspases/genética , Caspases/fisiologia , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Inibidores de Cisteína Proteinase/farmacologia , Grupo dos Citocromos c/análise , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Precursores Enzimáticos/biossíntese , Precursores Enzimáticos/genética , Raios gama , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/enzimologia , Potenciais da Membrana/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Transporte Proteico , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Estaurosporina/farmacologia , Superóxidos/metabolismo , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/metabolismo
19.
Oncogene ; 23(37): 6282-91, 2004 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15286713

RESUMO

Non-small-cell lung carcinomas (NSCLCs) are resistant to the induction of apoptosis by conventional anticancer treatment. However, NSCLC cell lines are sensitive to the action of the broad protein kinase inhibitor, staurosporine (STS). In the NSCLC cell line U1810, STS induced the mitochondrial release of apoptosis-inducing factor (AIF) and cytochrome c (Cyt c) followed by activation of caspases, nuclear condensation, DNA fragmentation and finally cell death. Although preincubation of U1810 cells with the broad-spectrum caspase inhibitor z-VAD.fmk delayed the occurrence of nuclear apoptosis induced by STS, it did not impede mitochondrial alterations (such as the release of Cyt c and AIF) and cell death to occur. Moreover, the microinjection of neither Cyt c nor recombinant active caspase-3 into the cytoplasm promoted nuclear apoptosis-related changes in U1810 cells. Evaluation of the role of the caspase-independent factor AIF in STS-mediated death revealed that, upon immunodepletion of AIF, cytosols from STS-treated U1810 lost their capacity to induce nuclear condensation when incubated with isolated nuclei. In addition, microinjection of an anti-AIF antibody prevented AIF from translocating to the nuclei of STS-treated U1810 cells and reduced STS-induced cell death. Finally, although the transfection-enforced overexpression of AIF was not sufficient to induce cell death, it did enhance STS-mediated cell killing. Altogether, these results indicate that activation of caspases is not sufficient to kill U1810 cells and rather suggests an important role for the AIF-mediated mitochondrial-mediated death pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Flavoproteínas/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Membrana/fisiologia , Fator de Indução de Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Imunofluorescência , Humanos , Neoplasias Pulmonares/patologia , Microinjeções , Testes de Neutralização , Transdução de Sinais
20.
Biochim Biophys Acta ; 1593(2-3): 277-82, 2003 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-12581872

RESUMO

The synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN/CD437) appears to possess an apoptotic activity superior to classical retinoids in vitro as in vivo. Numerous studies have shown that CD437-induced apoptosis is independent of its nuclear receptor activity, suggesting that CD437 might have a unique mechanism of action. The purpose of this study was to compare CD437- and all-trans retinoic acid (atRA)-induced cell death. CD437 provoked a rapid apoptotic phenotype immediately followed by secondary necrosis in RPMI 8226, U266 and L363 human myeloma cell lines. Nuclear apoptotic features were observed upon both CD437 and atRA treatments. In contrast, membrane blebbing and the subsequent formation of apoptotic bodies, a classical apoptotic event, was only observed upon atRA treatment. In addition, CD437, contrary to atRA, was unable to induce tissue transglutaminase (tTG), an intracellular enzyme involved in the formation of cross-linked protein polymers contributing to apoptotic morphological changes. Taken together, these data suggest that CD437 induces rapid but incomplete apoptotic phenotype in human myeloma cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Retinoides/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Lamina Tipo B/análise , Mieloma Múltiplo , RNA Mensageiro , Transglutaminases/análise , Tretinoína/farmacologia , Células Tumorais Cultivadas/diagnóstico por imagem , Células Tumorais Cultivadas/enzimologia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA