Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 152(1-2): 132-43, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332751

RESUMO

The sequence-specific transcription factor NF-Y binds the CCAAT box, one of the sequence elements most frequently found in eukaryotic promoters. NF-Y is composed of the NF-YA and NF-YB/NF-YC subunits, the latter two hosting histone-fold domains (HFDs). The crystal structure of NF-Y bound to a 25 bp CCAAT oligonucleotide shows that the HFD dimer binds to the DNA sugar-phosphate backbone, mimicking the nucleosome H2A/H2B-DNA assembly. NF-YA both binds to NF-YB/NF-YC and inserts an α helix deeply into the DNA minor groove, providing sequence-specific contacts to the CCAAT box. Structural considerations and mutational data indicate that NF-YB ubiquitination at Lys138 precedes and is equivalent to H2B Lys120 monoubiquitination, important in transcriptional activation. Thus, NF-Y is a sequence-specific transcription factor with nucleosome-like properties of nonspecific DNA binding and helps establish permissive chromatin modifications at CCAAT promoters. Our findings suggest that other HFD-containing proteins may function in similar ways.


Assuntos
Fator de Ligação a CCAAT/química , Sequência de Aminoácidos , Animais , Fator de Ligação a CCAAT/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Choque Térmico HSP72/genética , Histonas/química , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitinação
2.
N Engl J Med ; 385(21): 1929-1940, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34788506

RESUMO

BACKGROUND: Allogeneic hematopoietic stem-cell transplantation is the standard of care for Hurler syndrome (mucopolysaccharidosis type I, Hurler variant [MPSIH]). However, this treatment is only partially curative and is associated with complications. METHODS: We are conducting an ongoing study involving eight children with MPSIH. At enrollment, the children lacked a suitable allogeneic donor and had a Developmental Quotient or Intelligence Quotient score above 70 (i.e., none had moderate or severe cognitive impairment). The children received autologous hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with an α-L-iduronidase (IDUA)-encoding lentiviral vector after myeloablative conditioning. Safety and correction of blood IDUA activity up to supraphysiologic levels were the primary end points. Clearance of lysosomal storage material as well as skeletal and neurophysiological development were assessed as secondary and exploratory end points. The planned duration of the study is 5 years. RESULTS: We now report interim results. The children's mean (±SD) age at the time of HSPC gene therapy was 1.9±0.5 years. At a median follow-up of 2.10 years, the procedure had a safety profile similar to that known for autologous hematopoietic stem-cell transplantation. All the patients showed prompt and sustained engraftment of gene-corrected cells and had supraphysiologic blood IDUA activity within a month, which was maintained up to the latest follow-up. Urinary glycosaminoglycan (GAG) excretion decreased steeply, reaching normal levels at 12 months in four of five patients who could be evaluated. Previously undetectable levels of IDUA activity in the cerebrospinal fluid became detectable after gene therapy and were associated with local clearance of GAGs. Patients showed stable cognitive performance, stable motor skills corresponding to continued motor development, improved or stable findings on magnetic resonance imaging of the brain and spine, reduced joint stiffness, and normal growth in line with World Health Organization growth charts. CONCLUSIONS: The delivery of HSPC gene therapy in patients with MPSIH resulted in extensive metabolic correction in peripheral tissues and the central nervous system. (Funded by Fondazione Telethon and others; ClinicalTrials.gov number, NCT03488394; EudraCT number, 2017-002430-23.).


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Iduronidase/metabolismo , Mucopolissacaridose I/terapia , Pré-Escolar , Feminino , Seguimentos , Vetores Genéticos , Glicosaminoglicanos/urina , Humanos , Iduronidase/deficiência , Iduronidase/genética , Lactente , Lentivirus , Masculino , Mucopolissacaridose I/metabolismo , Mutação , Transplante de Células-Tronco , Transplante Autólogo
3.
Mol Cancer Ther ; 8(2): 449-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19190116

RESUMO

Differentiation is a complex set of events that can be blocked by rearrangements of regulatory genes producing fusion proteins with altered properties. In the case of myxoid liposarcoma (MLS) tumors, the causative abnormality is a fusion between the CHOP transcription factor and the FUS or EWS genes. CHOP belongs to and is a negative regulator of the large CAAT/enhancer binding protein family whose alpha, beta, and delta members are master genes of adipogenesis. Recent clinical data indicate a peculiar sensitivity of these tumors to the natural marine compound trabectedin. One hypothesis is that the activity of trabectedin is related to the inactivation of the FUS-CHOP oncogene. We find that trabectedin causes detachment of the FUS-CHOP chimera from targeted promoters. Reverse transcription-PCR and chromatin immunoprecipitation analysis in a MLS line and surgical specimens of MLS patients in vivo show activation of the CAAT/enhancer binding protein-mediated transcriptional program that leads to morphologic changes of terminal adipogenesis. The activity is observed in cells with type 1 but not type 8 fusions. Hence, the drug induces maturation of MLS lipoblasts in vivo by targeting the FUS-CHOP-mediated transcriptional block. These data provide a rationale for the specific activity of trabectedin and open the perspective of combinatorial treatments with drugs acting on lipogenic pathways.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Dioxóis/farmacologia , Lipossarcoma Mixoide/patologia , Tetra-Hidroisoquinolinas/farmacologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossarcoma Mixoide/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Ligação Proteica/efeitos dos fármacos , Proteína FUS de Ligação a RNA/genética , Trabectedina , Fator de Transcrição CHOP/genética
4.
Mol Cancer Ther ; 7(5): 1319-28, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18483319

RESUMO

Many genes involved in cell cycle control have promoters that bind the heterotrimeric transcription factor NF-Y. Several minor-groove binding drugs have been shown to block interactions of transcription factors with cognate DNA-binding sequences. We showed previously that noncovalent minor-groove binding agents block interactions of NF-Y with the promoter of topoisomerase IIalpha (topo IIalpha). In this study, we investigated the ability of GWL-78, a pyrrolobenzodiazepine-poly(N-methylpyrrole) conjugate, to inhibit the binding of NF-Y to DNA. Electrophoretic mobility shift assays showed that GWL-78 could displace NF-Y bound to several CCAAT motifs within promoters of genes involved in cell cycle progression. DNase I footprinting of the topo IIalpha promoter confirmed binding of GWL-78 to AT-rich sequences corresponding to the preferred binding site of NF-Y. Incubation with GWL-78 resulted in displacement of NF-Y binding to DNA. Chromatin immunoprecipitation assays on the topo IIalpha promoter showed that GWL-78 was able to enter the nucleus and interact with specific DNA sequences. Treatment of NIH3T3 cells with GWL-78 resulted in a block of cell cycle progression, which did not involve activation of p53. Thus, agents such as GWL-78 may be useful in modulating transcription and blocking cellular proliferation.


Assuntos
Antineoplásicos/farmacologia , Benzodiazepinas/farmacologia , Fator de Ligação a CCAAT/antagonistas & inibidores , Fator de Ligação a CCAAT/metabolismo , DNA/metabolismo , Dipeptídeos/farmacologia , Motivos de Aminoácidos , Animais , Antígenos de Neoplasias/efeitos dos fármacos , Antígenos de Neoplasias/genética , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCAAT/genética , Ciclo Celular , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Dados de Sequência Molecular , Células NIH 3T3
5.
Mol Cancer Ther ; 6(1): 346-54, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17237293

RESUMO

Topoisomerase IIalpha (topo IIalpha) is an important target for several chemotherapeutic agents, including etoposide and doxorubicin. Confluent cells express low levels of topo IIalpha and are resistant to etoposide treatment. Repression of transcription in confluent cells is mediated by binding of the transcription factor NF-Y to inverted CCAAT motifs within the topo IIalpha promoter. To block the repressive binding of NF-Y, a polyamide (JH-37) was designed to bind to the flanking regions of selected CCAAT sites within the topo IIalpha promoter. Electrophoretic mobility shift assays and DNase I footprinting assays showed occupancy of the inverted CCAAT sites by JH-37. Chromatin immunoprecipitation assays confirmed in vivo inhibition of NF-Y binding to the topo IIalpha promoter. Following incubation of confluent NIH3T3 cells with JH-37, increased expression of topo IIalpha mRNA and protein was detectable. This correlated both with increased DNA double-strand breaks as shown by comet assay and decreased cell viability following exposure to etoposide. Polyamides can modulate gene expression and chemosensitivity of cancer cells.


Assuntos
Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/genética , DNA Topoisomerases Tipo II/biossíntese , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Expressão Gênica/efeitos dos fármacos , Nylons/farmacologia , Regiões Promotoras Genéticas/genética , Animais , Antígenos de Neoplasias/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etoposídeo/farmacologia , Camundongos , Células NIH 3T3 , Nylons/química , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
6.
Gene ; 366(1): 109-16, 2006 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-16403426

RESUMO

Pole3 (DPB4/YBL1/CHRAC17) is one of the subunits of the DNA polymerase e. It contains a histone-like domain required for the hererodimerization with its Pole4 (DPB3) partner. In another interaction, Pole3 heterodimerizes with YCL1/CHRAC15 and associates with the ACF1/SNF2H remodelling complex. We find that the Pol3 gene is regulated in starved NIH3T3 fibroblasts upon induction with serum, with a peak at the entry in the S phase. We characterized the Pole3 promoter, which is linked bidirectionally to C9Orf46, a gene of unknown function: it has no CCAAT nor TATA-boxes, and contains an E box and two potential E2F sites. Mutagenesis analysis points to a minimal promoter region as sufficient for activation; the E box and a neighbouring direct repeat are important for regulation. Cell-cycle regulation was reproduced in stable clones and an additional E2F site was found to be important. Chromatin immunoprecipitation analysis indicates that E2F1/4, as well as MYC, are associated with the Pole3 promoter in a phase-specific way. These data highlight coregulation of a histone-like gene with core histones upon DNA synthesis, and represent a first dissection of the interplay between two essential cell-cycle regulators on a bidirectional promoter.


Assuntos
DNA Polimerase II/biossíntese , Regulação da Expressão Gênica/fisiologia , Fase S/fisiologia , Transcrição Gênica/fisiologia , Animais , Imunoprecipitação da Cromatina/métodos , DNA Polimerase II/genética , Histonas/biossíntese , Histonas/genética , Camundongos , Mutagênese/genética , Células NIH 3T3 , Mutação Puntual , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína/genética , Elementos de Resposta/genética , TATA Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA