Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 9(7): 1200-1210, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38767571

RESUMO

Nanostructured materials present improved thermoelectric properties due to non-trivial effects at the nanoscale. However, the characterization of individual nanostructures, especially from the thermal point of view, is still an unsolved topic. This work presents the complete structural, morphological, and thermoelectrical evaluation of the selfsame individual bottom-up integrated nanowire employing an innovative micro-machined device compatible with transmission electron microscopy whose fabrication is also discussed. Thanks to a design that arranges the nanostructured samples completely suspended, detailed structural analysis using transmission electron microscopy is enabled. In the same device architecture, electrical collectors and isolated heaters are available at both ends of the trenches for thermoelectrical measurements of the nanowire i.e. thermal and electrical properties simultaneously. This allows the direct measurement of the nanowire power factor. Furthermore, micro-Raman thermometry measurements were performed to evaluate the thermal conductivity of the same suspended silicon nanowire. A thermal profile of the self-heating nanowire could be spatially resolved and used to compute the thermal conductivity. In this work, heavily-doped silicon nanowires were grown on this microdevices yielding a thermal conductivity of 30.8 ± 1.7 W Km-1 and a power factor of 2.8 mW mK-2 at an average nanowire temperature of 400 K. Notably, no thermal contact resistance was observed between the nanowire and the bulk, confirming the epitaxial attachment. The device presented here shows remarkable utility in the challenging thermoelectrical characterization of integrated nanostructures and in the development of multiple devices such as thermoelectric generators.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947724

RESUMO

The broad and fascinating properties of nanowires and their synthesis have attracted great attention as building blocks for functional devices at the nanoscale. Silicon and germanium are highly interesting materials due to their compatibility with standard CMOS technology. Their combination provides optimal templates for quantum applications, for which nanowires need to be of high quality, with carefully designed dimensions, crystal phase, and orientation. In this work, we present a detailed study on the growth kinetics of silicon (length 0.1-1 µm, diameter 10-60 nm) and germanium (length 0.06-1 µm, diameter 10-500 nm) nanowires grown by chemical vapor deposition applying the vapour-liquid-solid growth method catalysed by gold. The effects of temperature, partial pressure of the precursor gas, and different carrier gases are analysed via scanning electron microscopy. Argon as carrier gas enhances the growth rate at higher temperatures (120 nm/min for Ar and 48 nm/min H2), while hydrogen enhances it at lower temperatures (35 nm/min for H2 and 22 nm/min for Ar) due to lower heat capacity. Both materials exhibit two growth regimes as a function of the temperature. The tapering rate is about ten times lower for silicon nanowires than for germanium ones. Finally, we identify the optimal conditions for nucleation in the nanowire growth process.

3.
J Phys Chem C Nanomater Interfaces ; 126(39): 16851-16858, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36237275

RESUMO

Crystal phase engineering gives access to new types of periodic nanostructures, such as the so-called twinning superlattices, where the motif of the superlattice is determined by a periodic rotation of the crystal. Here, by means of atomistic nonequilibrium molecular dynamics calculations, we study to what extent these periodic systems can be used to alter phonon transport in a controlled way, similar to what has been predicted and observed in conventional superlattices based on heterointerfaces. We focus on twinning superlattices in GaAs and InAs and highlight the existence of two different transport regimes: in one, each interface behaves like an independent scatterer; in the other, a segment with a sufficiently large number of closely spaced interfaces is seen by propagating phonons as a metamaterial with its own thermal properties. In this second scenario, we distinguish the case where the phonon mean free path is smaller or larger than the superlattice segment, pointing out a different dependence of the thermal resistance with the number of interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA