RESUMO
PURPOSE: Variants in CYP2C9 and VKORC1 genes have been associated with individuals' sensitivity to warfarin. The aim of this study was to investigate the differences of healthcare costs of genetically normal and genetically sensitive warfarin responder groups. METHODS: This was a retrospective study linking genotype data from three Finnish biobanks (THL Biobank, Auria Biobank, Helsinki Biobank) with healthcare encounter data of the Finnish Institute of Health and Welfare (THL), drug dispensation data from the Social Insurance Institution of Finland (Kela) and laboratory data from Finnish hospital districts and municipalities. We compared the normal and sensitive warfarin responder groups in terms of healthcare costs related to bleeding and thromboembolic events, INR tests and medication purchases. RESULTS: We found a trend towards increased bleeding-related hospital costs in the sensitive warfarin responder group (881 patients) when compared with the normal responders (1627 patients) with a per patient difference of 150.9 /year (95% CI: -55.1, 414.6 /year, p = 0.087). INR test costs were higher in the sensitive responder group with a difference of 7.2 /year (95% CI: -1.5, 16.4 /year, p = 0.047). Medication costs were significantly lower in the sensitive responder group with a difference of -14.4 /year (95% CI: -15.8, -12.9 /year, p < 0.001). CONCLUSIONS: The difference in the costs of bleeding-related hospitalization between genetically sensitive and normal warfarin responders may justify genotype-guided warfarin dosing. Further studies with larger sample sizes would be needed to verify the result.
Assuntos
Anticoagulantes , Varfarina , Humanos , Farmacogenética , Estudos Retrospectivos , Vitamina K Epóxido Redutases/genética , Hemorragia/induzido quimicamente , Custos de Cuidados de Saúde , Análise de Dados , Coeficiente Internacional NormatizadoRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder primarily affecting the nigrostriatal dopaminergic system. The link between heightened activity of glycogen synthase kinase 3ß (GSK3ß) and neurodegene-rative processes has encouraged investigation into the potential disease-modifying effects of novel GSK3ß inhibitors in experimental models of PD. Therefore, the intriguing ability of several anesthetics to readily inhibit GSK3ß within the cortex and hippocampus led us to investigate the effects of brief isoflurane anesthesia on striatal GSK3ß signaling in naïve rats and in a rat model of early-stage PD. Deep but brief (20-min) isoflurane anesthesia exposure increased the phosphorylation of GSK3ß at the inhibitory Ser9 residue, and induced phosphorylation of AKTThr308 (protein kinase B; negative regulator of GSK3ß) in the striatum of naïve rats and rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesion. The 6-OHDA protocol produced gradual functional deficiency within the nigrostriatal pathway, reflected as a preference for using the limb ipsilateral to the lesioned striatum at 2 weeks post 6-OHDA. Interestingly, such motor impairment was not observed in animals exposed to four consecutive isoflurane treatments (20-min anesthesia every 48 h; treatments started 7 days after 6-OHDA delivery). However, isoflurane had no effect on striatal or nigral tyrosine hydroxylase (a marker of dopaminergic neurons) protein levels. This brief report provides promising results regarding the therapeutic potential and neurobiological mechanisms of anesthetics in experimental models of PD and guides development of novel disease-modifying therapies.
Assuntos
Anestesia/efeitos adversos , Corpo Estriado/metabolismo , Isoflurano/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância Negra/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Isoflurano/administração & dosagem , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Oxidopamina/farmacologia , Doença de Parkinson/patologia , Ratos WistarRESUMO
Our aim was to apply a robust non-drug induced sensorimotor test battery to assess the efficacy of neurorestorative therapies on the motor deficits caused by partial unilateral 6-OHDA lesion mimicking early stage PD. Since the 6-OHDA lesion protocols to induce partial DA depletion in striatum vary extensively between laboratories, we evaluated the associations between different intrastriatal 6-OHDA doses (1 X 0-20 and 2 X 0-30 µg), striatal DA depletion (HPLC-ECD) and D-amphetamine induced rotation to identify a lesion protocol that would produce 40-60% striatal DA depletion. Doses ≥ 6 µg produced a significant DA depletion (ANOVA, P < 0.0001). 6-OHDA dose range (6-14 µg) causing 40-60% DA depletion induced very variable rotational responses. Next, intrastriatal 1 × 10 and 1 × 14 µg doses were compared with a full lesion (10 µg into the medial forebrain bundle) with regard to their effects on adjusting step, cylinder, and vibrissae test performance. A combined ipsilateral score (average of each test) was found more sensitive in distinguishing between different lesions than any test alone. Finally, five-week treadmill exercise starting two weeks post-lesion was able to restore impaired limb use (combined score; mixed model, P < 0.05) and striatal DA depletion (ANOVA, P < 0.05) in rats with partial lesion (1 × 10 µg). Notably, D-amphetamine induced rotation significantly decreased between weeks one to seven post-lesion (t-test, P < 0.01). In conclusion, intrastriatal 1 × 10 µg of 6-OHDA produces 40-60% striatal DA depletion robustly, and the combined ipsilateral score provides an efficient means for testing of the efficacy of neurorestorative or neuroprotective treatments for PD. © 2017 Wiley Periodicals, Inc.
Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Motores/induzido quimicamente , Transtornos Motores/etiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , RatosRESUMO
PURPOSE: Alzheimer's disease (AD) may disturb functions of the blood-brain barrier and change the disposition of drugs to the brain. This study assessed the disease-induced changes in drug transporters in the brain capillaries of transgenic AD mice. METHODS: Eighteen drug transporters and four tight junction-associated proteins were analyzed by RT-qPCR in cortex, hippocampus and cerebellum tissue samples of 12-16-month-old APdE9, Tg2576 and APP/PS1 transgenic mice and their healthy age-matched controls. In addition, microvessel fractions enriched from 1-3-month-old APdE9 mice were analyzed using RT-qPCR and Western blotting. Brain transport of methotrexate in APdE9 mice was assessed by in vivo microdialysis. RESULTS: The expression profiles of studied genes were similar in brain tissues of AD and control mice. Instead, in the microvessel fraction in APdE9 mice, >2-fold alterations were detected in the expressions of 11 genes but none at the protein level. In control mice strains, >5-fold changes between different brain regions were identified for Slc15a2, Slc22a3 and occludin. Methotrexate distribution into hippocampus of APdE9 mice was faster than in controls. CONCLUSIONS: The expression profile of mice carrying presenilin and amyloid precursor protein mutations is comparable to controls, but clear regional differences exist in the expression of drug transporters in brain.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Metotrexato/farmacocinética , Proteínas de Junções Íntimas/metabolismo , Doença de Alzheimer/genética , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Humanos , Masculino , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Metotrexato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Preparações Farmacêuticas/metabolismo , Proteínas de Junções Íntimas/análise , Proteínas de Junções Íntimas/genética , TranscriptomaRESUMO
The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly's drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50=55nM) was reached. Four lead compounds (EC50 range 55-410nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F=10.3%) and plasma levels achieved on oral administration.
Assuntos
Piperidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Compostos de Espiro/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-AtividadeRESUMO
Ganciclovir (GCV) is an essential part of the Herpes simplex virus thymidine kinase (HSV-tk) gene therapy of malignant gliomas. The purpose of this study was to investigate the brain pharmacokinetics and tumor uptake of GCV in the BT4C rat glioma model. GCV's brain and tumor uptakes were investigated by in vivo microdialysis in rats with orthotopic BT4C glioma. In addition, the ability of GCV to cross the blood-brain barrier and tumor vasculature was assessed with in situ rat brain perfusion. Finally, the extent to which GCV could permeate across the BT4C glioma cell membrane was assessed in vitro. The areas under the concentration curve of unbound GCV in blood, brain extracellular fluid (ECF), and tumor ECF were 6157, 1658, and 4834 µMâ min, respectively. The apparent maximum unbound concentrations achieved within 60 minutes were 46.9, 11.8, and 25.8 µM in blood, brain, and tumor, respectively. The unbound GCV concentrations in brain and tumor after in situ rat brain perfusion were 0.41 and 1.39 nmol/g, respectively. The highly polar GCV likely crosses the fenestrated tumor vasculature by paracellular diffusion. Thus, GCV is able to reach the extracellular space around the tumor at higher concentrations than that in healthy brain. However, GCV uptake into BT4C cells at 100 µM was only 2.1 pmol/mg of protein, and no active transporter-mediated disposition of GCV could be detected in vitro. In conclusion, the limited efficacy of HSV-tk/GCV gene therapy may be due to the poor cellular uptake and rapid elimination of GCV.
Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Ganciclovir/metabolismo , Ganciclovir/farmacocinética , Glioma/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Masculino , Ratos , Células Tumorais CultivadasRESUMO
1. Currently available in vitro blood-brain barrier models all have recognized restrictions. In addition to leakiness, inconsistent data about P-glycoprotein mediated efflux limit the attractiveness of the primary bovine brain microvessel endothelial cells (BBMECs). Therefore, we re-evaluated the role of P-glycoprotein mediated efflux with two culture conditions in BBMECs for prediction of drug permeability of potential P-glycoprotein substrates. 2. BBMECs were monocultured on filters on petri dishes and on filter inserts, and expression and localization of P-glycoprotein were compared by using western blot and confocal microscopy, respectively. The functionality of P-glycoprotein was assessed by using cellular uptake, calcein-AM and bidirectional transport assays. 3. P-glycoprotein expression was higher in BBMECs cultured on filter inserts decreasing the permeability of digoxin and paclitaxel, but not the permeability of vinblastine. However, the monocultured BBMECs were not able to demonstrate efflux in the bidirectional transport assays. Under certain culture conditions, occludin may not be correctly located, perhaps explaining in part the leakiness of BBMECs. 4. In conclusion, BBMECs, despite possessing a functional P-glycoprotein, under certain culture conditions may not be a suitable in vitro model for the bidirectional transport assays and for predicting the permeability of drugs and xenobiotics that are potential P-glycoprotein substrates.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Microvasos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Western Blotting , Bovinos , Células Cultivadas , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Modelos Biológicos , PermeabilidadeRESUMO
Background: Rasagiline or pramipexole monotherapy has been suggested for the management of early Parkinson's disease (PD). The aim of this research was to systematically review the clinical efficacy and safety of rasagiline or pramipexole in early PD (defined as disease duration ≤5 years and Hoehn and Yahr stage of ≤3). Methods: Randomized controlled trials (RCTs) of rasagiline or pramipexole for early PD published up to September 2021 were retrieved. Outcomes of interest included changes in the Unified Parkinson's Disease Rating Scale (UPDRS) Parts II and III and the incidence of adverse events. Standardized mean difference (SMD), odds ratio (OR), and 95% confidence interval (CI) were calculated, and heterogeneity was measured with the I2 test. Results: Nine rasagiline and eleven pramipexole RCTs were included. One post hoc analysis of one rasagiline study was included. Five studies for each drug were included in meta-analyses of the UPDRS scores. The rasagiline meta-analysis focused on patients receiving 1 mg/day. Rasagiline and pramipexole significantly improved UPDRS Part II and III scores when compared to placebo. Significant heterogeneity among the studies was present (I2 > 70%). Neither rasagiline nor pramipexole increased the relative risk for any adverse events, serious adverse events, or adverse events leading to withdrawal when compared with placebo. Conclusion: Applying a Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach to summarize the evidence, we found moderate confidence in the body of evidence for the efficacy of rasagiline or pramipexole in early PD, suggesting further well-designed, multicenter comparative RCTs remain needed.
RESUMO
INTRODUCTION: A better understanding of the earliest stages of Alzheimer's disease (AD) could expedite the development or administration of treatments. Large population biobanks hold the promise to identify individuals at an elevated risk of AD and related dementias based on health registry information. Here, we establish the protocol for an observational clinical recall and biomarker study called TWINGEN with the aim to identify individuals at high risk of AD by assessing cognition, health and AD-related biomarkers. Suitable candidates were identified and invited to participate in the new study among THL Biobank donors according to TWINGEN study criteria. METHODS AND ANALYSIS: A multi-centre study (n=800) to obtain blood-based biomarkers, telephone-administered and web-based memory and cognitive parameters, questionnaire information on lifestyle, health and psychological factors, and accelerometer data for measures of physical activity, sedentary behaviour and sleep. A subcohort is being asked to participate in an in-person neuropsychological assessment (n=200) and wear an Oura ring (n=50). All participants in the TWINGEN study have genome-wide genotyping data and up to 48 years of follow-up data from the population-based older Finnish Twin Cohort (FTC) study of the University of Helsinki. The data collected in TWINGEN will be returned to THL Biobank from where it can later be requested for other biobank studies such as FinnGen that supported TWINGEN. ETHICS AND DISSEMINATION: This recall study consists of FTC/THL Biobank/FinnGen participants whose data were acquired in accordance with the Finnish Biobank Act. The recruitment protocols followed the biobank protocols approved by Finnish Medicines Agency. The TWINGEN study plan was approved by the Ethics Committee of Hospital District of Helsinki and Uusimaa (number 16831/2022). THL Biobank approved the research plan with the permission no: THLBB2022_83.
Assuntos
Doença de Alzheimer , Bancos de Espécimes Biológicos , Biomarcadores , Humanos , Finlândia , Biomarcadores/sangue , Feminino , Idoso , Masculino , Estudos de Coortes , Pessoa de Meia-Idade , Testes Neuropsicológicos , Cognição , Fatores de Risco , Projetos de PesquisaRESUMO
BACKGROUND: Micro- and nanoplastics (MNPs) are emerging pollutants of concern with ubiquitous presence in global ecosystems. MNPs pose potential implications for human health; however, the health impacts of MNP exposures are not yet understood. Recent evidence suggests that MNPs can cross the placental barrier, underlying the urgent need to understand their impact on reproductive health and development. OBJECTIVE: The Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics (AURORA) project will investigate MNP exposures and their biological and health effects during pregnancy and early life, which are critical periods due to heightened vulnerability to environmental stressors. The AURORA project will enhance exposure assessment capabilities for measuring MNPs, MNP-associated chemicals, and plastic additives in human tissues, including placenta and blood. METHODS: In this interdisciplinary project, we will advance methods for in-depth characterization and scalable chemical analytical strategies, enabling high-resolution and large-scale toxicological, exposure assessment, and epidemiological studies. The AURORA project performs observational studies to investigate determinants and health impacts of MNPs by including 800 mother-child pairs from 2 existing birth cohorts and 110 women of reproductive age from a newly established cohort. This will be complemented by toxicological studies using a tiered-testing approach and epidemiological investigations to evaluate associations between maternal and prenatal MNP exposures and health perturbations, such as placental function, immune-inflammatory responses, oxidative stress, accelerated aging, endocrine disruption, and child growth and development. The ultimate goal of the AURORA project is to create an MNP risk assessment framework and identify the remaining knowledge gaps and priorities needed to comprehensively assess the impact of MNPs on early-life health. RESULTS: In the first 3 years of this 5-year project (2021-2026), progress was made toward all objectives. This includes completion of recruitment and data collection for new and existing cohorts, development of analytical methodological protocols, and initiation of the toxicological tiered assessments. As of September 2024, data analysis is ongoing and results are expected to be published starting in 2025. CONCLUSIONS: As plastic pollution increases globally, it is imperative to understand the impact of MNPs on human health, particularly during vulnerable developmental stages such as early life. The contributions of the AURORA project will inform future risk assessment. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/63176.
Assuntos
Microplásticos , Humanos , Feminino , Gravidez , Microplásticos/efeitos adversos , Microplásticos/toxicidade , Exposição Materna/efeitos adversos , Medição de Risco , Adulto , Nanopartículas/efeitos adversos , Nanopartículas/toxicidadeRESUMO
PURPOSE: Drug delivery to the brain is impeded by the blood-brain barrier (BBB). Here, we attempted to enhance the brain uptake of cationic dopamine by utilizing the large amino acid transporter 1 (LAT1) at the BBB by prodrug approach. METHODS: Three amino acid prodrugs of dopamine were synthesized and their prodrug properties were examined in vitro. Their LAT1-binding and BBB-permeation were studied using the in situ rat brain perfusion technique. The brain uptake after intravenous administration and the dopamine-releasing ability in the rat striatum after intraperitoneal administration were also determined for the most promising prodrug. RESULTS: All prodrugs underwent adequate cleavage in rat tissue homogenates. The prodrug with phenylalanine derivative as the promoiety had both higher affinity for LAT1 and better brain uptake properties than those with an alkyl amino acid - mimicking promoiety. The phenylalanine prodrug was taken up into the brain after intravenous injection but after intraperitoneal injection the prodrug did not elevate striatal dopamine concentrations above those achieved by corresponding L-dopa treatment. CONCLUSIONS: These results indicate that attachment of phenylalanine to a cationic drug via an amide bond from the meta-position of its aromatic ring could be highly applicable in prodrug design for LAT1-mediated CNS-delivery of not only anionic but also cationic polar drugs.
Assuntos
Aminoácidos , Encéfalo/efeitos dos fármacos , Dopamina/administração & dosagem , Desenho de Fármacos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Pró-Fármacos , Aminoácidos/síntese química , Aminoácidos/química , Aminoácidos/farmacocinética , Animais , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Dopamina/farmacocinética , Estabilidade de Medicamentos , Injeções Intravenosas , Masculino , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Ratos Wistar , SolubilidadeRESUMO
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Assuntos
Microplásticos , Placenta , Animais , Humanos , Gravidez , Feminino , Placenta/metabolismo , Microplásticos/metabolismo , Transporte Biológico , Feto , Técnicas de CoculturaRESUMO
Increased oxidative stress, dysfunctional cellular clearance, and chronic inflammation are associated with age-related macular degeneration (AMD). Prolyl oligopeptidase (PREP) is a serine protease that has numerous cellular functions, including the regulation of oxidative stress, protein aggregation, and inflammation. PREP inhibition by KYP-2047 (4-phenylbutanoyl-L-prolyl1(S)-cyanopyrrolidine) has been associated with clearance of cellular protein aggregates and reduced oxidative stress and inflammation. Here, we studied the effects of KYP-2047 on inflammation, oxidative stress, cell viability, and autophagy in human retinal pigment epithelium (RPE) cells with reduced proteasomal clearance. MG-132-mediated proteasomal inhibition in ARPE-19 cells was used to model declined proteasomal clearance in the RPEs of AMD patients. Cell viability was assessed using LDH and MTT assays. The amounts of reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate (H2DCFDA). ELISA was used to determine the levels of cytokines and activated mitogen-activated protein kinases. The autophagy markers p62/SQSTM1 and LC3 were measured with the western blot method. MG-132 induced LDH leakage and increased ROS production in the ARPE-19 cells, and KYP-2047 reduced MG-132-induced LDH leakage. Production of the proinflammatory cytokine IL-6 was concurrently alleviated by KYP-2047 when compared with cells treated only with MG-132. KYP-2047 had no effect on autophagy in the RPE cells, but the phosphorylation levels of p38 and ERK1/2 were elevated upon KYP-2047 exposure, and the inhibition of p38 prevented the anti-inflammatory actions of KYP-2047. KYP-2047 showed cytoprotective and anti-inflammatory effects on RPE cells suffering from MG-132-induced proteasomal inhibition.
RESUMO
Increasing evidence suggests that the gut-brain axis plays a crucial role in Parkinson's disease (PD). The abnormal accumulation of aggregated alpha-synuclein (aSyn) in the brain is a key pathological feature of PD. Intracerebral 6-hydroxydopamine (6-OHDA) is a widely used dopaminergic lesion model of PD. It exerts no aSyn pathology in the brain, but changes in the gut have not been assessed. Here, 6-OHDA was administered unilaterally either to the rat medial forebrain bundle (MFB) or striatum. Increased levels of glial fibrillary acidic protein in the ileum and colon were detected at 5 weeks postlesion. 6-OHDA decreased the Zonula occludens protein 1 barrier integrity score, suggesting increased colonic permeability. The total aSyn and Ser129 phosphorylated aSyn levels were elevated in the colon after the MFB lesion. Both lesions generally increased the total aSyn, pS129 aSyn, and ionized calcium-binding adapter molecule 1 (Iba1) levels in the lesioned striatum. In conclusion, 6-OHDA-induced nigrostriatal dopaminergic damage leads to increased aSyn levels and glial cell activation particularly in the colon, suggesting that the gut-brain axis interactions in PD are bidirectional and the detrimental process may start in the brain.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Animais , Oxidopamina , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Colo/metabolismoRESUMO
Introduction: A better understanding of the earliest stages of Alzheimer's disease (AD) could expedite the development or administration of treatments. Large population biobanks hold the promise to identify individuals at an elevated risk of AD and related dementias based on health registry information. Here, we establish the protocol for an observational clinical recall and biomarker study called TWINGEN with the aim to identify individuals at high risk of AD by assessing cognition, health and AD-related biomarkers. Suitable candidates were identified and invited to participate in the new study among Finnish biobank donors according to TWINGEN study criteria. Methods and analysis: A multi-center study (n=800) to obtain blood-based biomarkers, telephone-administered and web-based memory and cognitive parameters, questionnaire information on lifestyle, health and psychological factors, and accelerometer data for measures of physical activity, sedentary behavior and sleep. A sub-cohort are being asked to participate in an in-person neuropsychological assessment (n=200) and wear an Oura ring (n=50). All participants in the TWINGEN study have genome-wide genotyping data and up to 48 years of follow-up data from the population-based older Finnish Twin Cohort (FTC) study of the University of Helsinki. TWINGEN data will be transferred to Finnish Institute of Health and Welfare (THL) biobank and we aim to further to transfer it to the FinnGen study where it will be combined with health registry data for prediction of AD. Ethics and dissemination: This recall study consists of FTC/THL/FinnGen participants whose data were acquired in accordance with the Finnish Biobank Act. The recruitment protocols followed the biobank protocols approved by Finnish Medicines Agency. The TWINGEN study plan was approved by the Ethics Committee of Hospital District of Helsinki and Uusimaa (number 16831/2022). THL Biobank approved the research plan with the permission no: THLBB2022_83.
RESUMO
Researchers, regulatory agencies, and the pharmaceutical industry are moving towards precision pharmacovigilance as a comprehensive framework for drug safety assessment, at the service of the individual patient, by clustering specific risk groups in different databases. This article explores its implementation by focusing on: (i) designing a new data collection infrastructure, (ii) exploring new computational methods suitable for drug safety data, and (iii) providing a computer-aided framework for distributed clinical decisions with the aim of compiling a personalized information leaflet with specific reference to a drug's risks and adverse drug reactions. These goals can be achieved by using 'smart hospitals' as the principal data sources and by employing methods of precision medicine and medical statistics to supplement current public health decisions.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacovigilância , Sistemas de Notificação de Reações Adversas a Medicamentos , Coleta de Dados , Indústria Farmacêutica , Hospitais , HumanosRESUMO
Prolyl endopeptidase (PREP), probably acting through the inositol cycle, has been implicated in memory and learning. However, the physiological role of PREP is unknown. It has been shown that PREP expression, regulated in cerebellar granule cells, has probably a role in cell proliferation and differentiation. Here, we report the levels and subcellular distribution of PREP in human neuroblastoma SH-SY5Y cells in proliferating conditions and under differentiation induced by retinoic acid (RA). We analysed the levels of cell signalling intermediates, growth behavior and gene expression, and differentiation morphology changes, upon PREP inhibition. After induction of differentiation, PREP activity was found decreased in the nucleus but increased to high levels in the cytoplasm, due in part to increased PREP transcription. The levels of inositol (1,4,5)-trisphosphate revealed no correlation with PREP activity, but phosphorylated extracellular signal-regulated kinases 1 and 2 were decreased by PREP inhibition during early stages of differentiation. Morphological evaluation indicated that PREP inhibition retarded the onset of differentiation. PREP activity regulated gene expression of protein synthesis machinery, intracellular transport and kinase complexes. We conclude that PREP is a regulatory target and a regulatory element in cell signalling. This is the first report of a direct influence of a cell signalling molecule, RA, on PREP expression.
Assuntos
Proteínas Mitocondriais/metabolismo , Neuroblastoma/enzimologia , Neurônios/enzimologia , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Humanos , Proteínas Mitocondriais/genética , Neuroblastoma/patologia , Neurônios/patologia , Serina Endopeptidases/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Reversal learning, a component of executive functioning, is commonly impaired among schizophrenia patients and is lacking effective treatment. N-methyl-á´ -aspartate (NMDA) receptor antagonists, such as phencyclidine (PCP), impair reversal learning of rodents. Touchscreen-based pairwise visual discrimination and reversal test is a translational tool to assess reversal learning in rodents. However, to fully exploit this task in testing of novel compounds, it is necessary to perform several reversal learning experiments with trained animals. Firstly, we assessed whether PCP-induced deficits in visual reversal learning in rats would be detectable with a short (5 sessions) reversal learning phase, and whether the short reversal phases could be repeated with novel stimulus pairs. Secondly, we assessed whether the PCP-induced deficits in reversal learning could be seen upon repeated PCP challenges with the same animals. Finally, we tested the effect of a novel compound, a selective α2C adrenoceptor antagonist, ORM-13070, to reverse PCP-induced cognitive deficits in this model. A 4-day PCP treatment at a dose of 1.5 mg/kg/day impaired early reversal learning in male Lister Hooded rats without inducing non-specific behavioral effects. We repeated the reversal learning experiment four times using different stimulus pairs with the same animals, and the PCP-induced impairment was evident in every single experiment. The α2C adrenoceptor antagonist ameliorated the PCP-induced cognitive deficits. Our results suggest that repeated PCP challenges in the touchscreen set-up induce schizophrenia-like cognitive deficits in visual reversal learning, improve throughput of the test and provide a protocol for testing novel drugs.
Assuntos
Disfunção Cognitiva/induzido quimicamente , Fenciclidina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Masculino , Estimulação Luminosa , RatosRESUMO
The prodrug approach targeting influx transporters has been extensively studied as a means of central nervous system drug delivery. Transporter and enzyme expression, localization and activity may contribute to significant species differences in preclinical studies. However, data about the possible species differences in the intra-brain distribution of transporter utilizing compounds is scarce. Here, we investigated the species differences in the intra-brain distribution of an L-type amino acid transporter 1 (LAT1)-utilizing L-lysine analogue of ketoprofen (KPF) (compound 1) and KPF itself by the whole tissue and brain microdialysis methods in mice, and compared the results to those previously reported in rats. Their pharmacodynamic responses in both species were assessed by measuring the brain prostaglandin E2 (PGE2) levels by LC-MS/MS. The intracellular delivery of compound 1 was much lower in mice than in rats. Higher target site concentrations of compound 1 and released KPF were reflected on a more pronounced effect on PGE2 levels in the rat brain. In conclusion, these results highlight the need for cross-species characterization of prodrug pharmacokinetics and pharmacodynamics in preclinical studies.
Assuntos
Barreira Hematoencefálica , Espectrometria de Massas em Tandem , Sistema y+L de Transporte de Aminoácidos , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Ratos , Especificidade da EspécieRESUMO
Mephedrone (4-MMC), despite its illegal status, is still a widely used psychoactive substance. Its effects closely mimic those of the classical stimulant drug methamphetamine (METH). Recent research suggests that unlike METH, 4-MMC is not neurotoxic on its own. However, the neurotoxic effects of 4-MMC may be precipitated under certain circumstances, such as administration at high ambient temperatures. Common use of 4-MMC in conjunction with alcohol raises the question whether this co-consumption could also precipitate neurotoxicity. A total of six groups of adolescent rats were treated twice daily for four consecutive days with vehicle, METH (5 mg/kg) or 4-MMC (30 mg/kg), with or without ethanol (1.5 g/kg). To investigate persistent delayed effects of the administrations at two weeks after the final treatments, manganese-enhanced magnetic resonance imaging brain scans were performed. Following the scans, brains were collected for Golgi staining and spine analysis. 4-MMC alone had only subtle effects on neuronal activity. When administered with ethanol, it produced a widespread pattern of deactivation, similar to what was seen with METH-treated rats. These effects were most profound in brain regions which are known to have high dopamine and serotonin activities including hippocampus, nucleus accumbens and caudate-putamen. In the regions showing the strongest activation changes, no morphological changes were observed in spine analysis. By itself 4-MMC showed few long-term effects. However, when co-administered with ethanol, the apparent functional adaptations were profound and comparable to those of neurotoxic METH.