RESUMO
Tuberculosis, caused by Mycobacterium tuberculosis, responsible for â¼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3' end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.
Assuntos
Mycobacterium tuberculosis/enzimologia , Fenilalanina-tRNA Ligase/química , RNA de Transferência de Fenilalanina/química , Aminoacilação de RNA de Transferência , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Humanos , Ligantes , Modelos Moleculares , Mycobacterium tuberculosis/genética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina-tRNA Ligase/metabolismo , Ligação Proteica , RNA de Transferência de Fenilalanina/metabolismo , Thermus thermophilus/enzimologiaRESUMO
Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.
Assuntos
Criptosporidiose , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Malária Falciparum , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Criptosporidiose/tratamento farmacológico , Criptosporidiose/enzimologia , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Humanos , Lisina-tRNA Ligase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Camundongos SCID , Proteínas de Protozoários/metabolismoRESUMO
Metastatic prostate cancer is a lethal disease that remains incurable despite the recent approval of new drugs, thus making the development of alternative treatment approaches urgently needed. A more precise understanding of the molecular mechanisms underlying prostate cancer dissemination could lead to the identification of novel therapeutic targets for the design of efficient anti-metastatic strategies. MicroRNA (miRNAs) are endogenous, small non-coding RNA molecules acting as key regulators of gene expression at post-transcriptional level. It has been clearly established that altered miRNA expression is a common hallmark of cancer. In addition, emerging evidence suggests their direct involvement in the metastatic cascade. In this review, we present a comprehensive overview of the data generated in experimental tumor models indicating that specific miRNAs may impinge on the different stages of prostate cancer metastasis, including (i) the regulation of epithelial-to-mesenchymal transition and cell migration/invasion, (ii) the interplay between cancer cells and the surrounding stroma, (iii) the control of angiogenesis, (iv) the regulation of anoikis, and (v) the colonization of distant organs. Moreover, we show preliminary evidence of the clinical relevance of some of these miRNAs, in terms of association with tumor aggressiveness/dissemination and clinical outcome, as emerged from translation studies carried out in prostate cancer patient cohorts. We also discuss the potential and the current limitations of manipulating metastasis-related miRNAs, by mimicking or inhibiting them, as a strategy for the development of novel therapeutic approaches for the advanced disease.
Assuntos
MicroRNAs/genética , Metástase Neoplásica/genética , Próstata/patologia , Neoplasias da Próstata/genética , Animais , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/análise , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Próstata/irrigação sanguínea , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapiaRESUMO
Cryptosporidiosis is a diarrheal disease caused by infection with Cryptosporidium spp. parasites and is a leading cause of death in malnourished children worldwide. The only approved treatment, nitazoxanide, has limited efficacy in this at-risk patient population. Additional safe therapeutics are urgently required to tackle this unmet medical need. However, the development of anti-cryptosporidial drugs is hindered by a lack of understanding of the optimal compound properties required to treat this gastrointestinal infection. To address this knowledge gap, a diverse set of potent lysyl-tRNA synthetase inhibitors was profiled to identify optimal physicochemical and pharmacokinetic properties required for efficacy in a chronic mouse model of infection. The results from this comprehensive study illustrated the importance of balancing solubility and permeability to achieve efficacy in vivo. Our results establish in vitro criteria for solubility and permeability that are predictive of compound efficacy in vivo to guide the optimization of anti-cryptosporidial drugs. Two compounds from chemically distinct series (DDD489 and DDD508) were identified as demonstrating superior efficacy and prioritized for further evaluation. Both compounds achieved marked parasite reduction in immunocompromised mouse models and a disease-relevant calf model of infection. On the basis of these promising data, these compounds have been selected for progression to preclinical safety studies, expanding the portfolio of potential treatments for this neglected infectious disease.
Assuntos
Criptosporidiose , Lisina-tRNA Ligase , Permeabilidade , Solubilidade , Animais , Criptosporidiose/tratamento farmacológico , Camundongos , Lisina-tRNA Ligase/metabolismo , Lisina-tRNA Ligase/antagonistas & inibidores , Cryptosporidium/efeitos dos fármacos , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , Modelos Animais de DoençasRESUMO
Maternal embryonic leucine zipper kinase (MELK) is upregulated in several types of tumor, including breast, prostate, and brain tumors. Its expression is generally associated with cell survival, cell proliferation, and resistance to apoptosis. Therefore, the potential of MELK inhibitors as therapeutic agents is recently attracting considerable interest. Here we report the first structures of MELK in complex with AMP-PNP and with nanomolar inhibitors. Our studies shed light on the role of the MELK UBA domain, provide a characterization of the kinase active site, and identify key residues for achieving high potency, laying the groundwork for structure-based drug design efforts.
Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Adenilil Imidodifosfato/farmacologia , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Pirazóis/química , Pirazóis/farmacologiaRESUMO
The need for new antibiotics is urgent. Antimicrobial resistance is rising, although currently, many more people die from drug-sensitive bacterial infections. The continued evolution of drug resistance is inevitable, fueled by pathogen population size and exposure to antibiotics. Additionally, opportunistic pathogens will always pose a threat to vulnerable patients whose immune systems cannot efficiently fight them even if they are sensitive to available antibiotics, according to clinical microbiology tests. These problems are intertwined and will worsen as human populations age, increase in density, and experience disruptions such as war, extreme weather events, or declines in standard of living. The development of appropriate drugs to treat all the world's bacterial infections should be a priority, and future success will likely require combinations of multiple approaches. However, the highest burden of bacterial infection is in Low- and Middle-Income Countries, where limited medical infrastructure is a major challenge. For effectively managing infections in these contexts, small-molecule-based treatments offer significant advantages. Unfortunately, support for ongoing small-molecule antibiotic discovery has recently suffered from significant challenges related both to the scientific difficulties in treating bacterial infections and to market barriers. Nevertheless, small-molecule antibiotics remain essential and irreplaceable tools for fighting infections, and efforts to develop novel and improved versions deserve ongoing investment. Here, we first describe the global historical context of antibiotic treatment and then highlight some of the challenges surrounding small-molecule development and potential solutions. Many of these challenges are likely to be common to all modalities of antibacterial treatment and should be addressed directly.
Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológicoRESUMO
Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Uganda , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária/parasitologia , Resistência a Medicamentos/genética , Ligases , Proteínas de Protozoários/genéticaRESUMO
There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 µM) and in vitro ADMET profiles.
Assuntos
Benzofuranos , Mycobacterium tuberculosis , Policetídeo Sintases , Antituberculosos/química , Mycobacterium tuberculosis/metabolismo , Benzofuranos/química , Testes de Sensibilidade MicrobianaRESUMO
Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at -1,500/-500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues.
RESUMO
As part of our drug discovery effort, we identified and developed 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as PLK1 inhibitors. We now report the optimization of this class that led to the identification of NMS-P937, a potent, selective and orally available PLK1 inhibitor. Also, in order to understand the source of PLK1 selectivity, we determined the crystal structure of PLK1 with NMS-P937. The compound was active in vivo in HCT116 xenograft model after oral administration and is presently in Phase I clinical trials evaluation.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinazolinas/farmacologia , Administração Oral , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-LikeRESUMO
There is a shift in antimalarial drug discovery from phenotypic screening toward target-based approaches, as more potential drug targets are being validated in Plasmodium species. Given the high attrition rate and high cost of drug discovery, it is important to select the targets most likely to deliver progressible drug candidates. In this paper, we describe the criteria that we consider important for selecting targets for antimalarial drug discovery. We describe the analysis of a number of drug targets in the Malaria Drug Accelerator (MalDA) pipeline, which has allowed us to prioritize targets that are ready to enter the drug discovery process. This selection process has also highlighted where additional data are required to inform target progression or deprioritization of other targets. Finally, we comment on how additional drug targets may be identified.
Assuntos
Antimaláricos , Malária , Plasmodium , Descoberta de Drogas , Humanos , Malária/tratamento farmacológicoRESUMO
A novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure-activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/química , Aurora Quinases , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos SCID , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Pirazóis/síntese química , Pirazóis/química , Estereoisomerismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Transplante HeterólogoRESUMO
A total synthesis of the tripeptide alkaloid (-)-chaetominine (1) was achieved in 9.3% overall yield starting from commercially available D-tryptophan methyl ester, based on a short and straightforward (nine steps) sequence. The early stage introduction (first step) of the quinazolinone moiety and the late stage introduction (penultimate step) of the hydroxy group allowed a synthetic strategy devoid of protective groups. The key step of the process is the a-c tricyclic ring construction via an unprecedented NCS-mediated N-acyl cyclization on an indole ring to give tetrahydro-1H-pyrido[2,3-b]indole 11. In the penultimate step, oxidation of the tetracyclic intermediate 14 with oxaziridine 15 gave only one of the four possible diastereoisomers, the cis-diastereoisomer 16 resulting from the attack of the oxaziridine to the double bond face opposite to the c-d ring substituents. In the last step, the complete stereocontrol of the Et(3)SiH/TFA reduction of compound 16, probably involving a N-acyliminium ion, can be attributed to ring constrain, which forces the b-c ring junction in the more stable cis-orientation. (-)-Chaetominine (1) showed a negligible inhibitory activity on several cancer cell lines.
Assuntos
Alcaloides Indólicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Estrutura Molecular , Peptídeos Cíclicos/química , Quinazolinas/química , EstereoisomerismoRESUMO
In his most celebrated tale "The Picture of Dorian Gray", Oscar Wilde stated that "those who go beneath the surface do so at their peril". This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity--from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products.
Assuntos
Alcaloides/síntese química , Imidazóis/síntese química , Poríferos/química , Pirróis/síntese química , Alcaloides/farmacologia , Animais , Imidazóis/farmacologia , Biologia Marinha , Pirróis/farmacologiaRESUMO
Though miR-205 function has been largely characterized, the nature of its host gene, MIR205HG, is still completely unknown. Here, we show that only lowly expressed alternatively spliced MIR205HG transcripts act as de facto pri-miRNAs, through a process that involves Drosha to prevent unfavorable splicing and directly mediate miR-205 excision. Notably, MIR205HG-specific processed transcripts revealed to be functional per se as nuclear long noncoding RNA capable of regulating differentiation of human prostate basal cells through control of the interferon pathway. At molecular level, MIR205HG directly binds the promoters of its target genes, which have an Alu element in proximity of the Interferon-Regulatory Factor (IRF) binding site, and represses their transcription likely buffering IRF1 activity, with the ultimate effect of preventing luminal differentiation. As MIR205HG functions autonomously from (albeit complementing) miR-205 in preserving the basal identity of prostate epithelial cells, it warrants reannotation as LEADeR (Long Epithelial Alu-interacting Differentiation-related RNA).
Assuntos
MicroRNAs/genética , Próstata/citologia , RNA Longo não Codificante/genética , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Células Epiteliais/metabolismo , Edição de Genes , Humanos , Masculino , Regiões Promotoras Genéticas , Próstata/metabolismo , Ribonuclease III/metabolismo , TranscriptomaRESUMO
Cdc7 kinase is an essential protein that promotes DNA replication in eukaryotic organisms. Genetic evidence indicates that Cdc7 inhibition can cause selective tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 small-molecule inhibitors for the treatment of cancers. In this paper, the synthesis and structure-activity relationships of 2-heteroaryl-pyrrolopyridinones, the first potent Cdc7 kinase inhibitors, are described. Starting from 2-pyridin-4-yl-1,5,6,7-tetrahydro-pyrrolo[3,2-c]pyridin-4-one, progress toward a simple scaffold, tailored for Cdc7 inhibition, is reported.
Assuntos
Antineoplásicos/síntese química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridonas/síntese química , Pirróis/síntese química , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/síntese química , Furanos/química , Furanos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Piridonas/química , Piridonas/farmacologia , Pirróis/química , Pirróis/farmacologia , Homologia de Sequência de Aminoácidos , Relação Estrutura-AtividadeRESUMO
Plasmodium falciparum (Pf) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit PfProRS enzyme activity versus Homo sapiens (Hs) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of PfProRS. We identified two new inhibitors of PfProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for PfProRS compared to HsProRS, demonstrating this class of compounds could overcome the toxicity related to HsProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with PfProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria.
Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/enzimologia , Sítios de Ligação , Clonagem Molecular , Descoberta de Drogas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Bibliotecas de Moléculas PequenasRESUMO
The optimization of a series of 5-phenylacetyl 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives toward the inhibition of Aurora kinases led to the identification of compound 9d. This is a potent inhibitor of Aurora kinases that also shows low nanomolar potency against additional anticancer kinase targets. Based on its high antiproliferative activity on different cancer cell lines, favorable chemico-physical and pharmacokinetic properties, and high efficacy in in vivo tumor models, compound 9d was ultimately selected for further development.
Assuntos
Antineoplásicos/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/síntese química , Pirróis/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Aurora Quinases , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Masculino , Camundongos , Modelos Moleculares , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Solubilidade , Relação Estrutura-AtividadeRESUMO
Potent and selective Aurora kinase inhibitors were identified from the combinatorial expansion of the 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole bi-cycle, a novel and versatile scaffold designed to target the ATP pocket of protein kinases. The most potent compound reported in this study had an IC(50) of 0.027 microM in the enzymatic assay for Aur-A inhibition and IC(50)s between 0.05 microM and 0.5 microM for the inhibition of proliferation of different tumor cell lines.
Assuntos
Antineoplásicos/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Piperazinas/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirróis/síntese química , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Aurora Quinases , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Combinatória , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Piperazinas/química , Piperazinas/farmacologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/química , Pirróis/farmacologia , Relação Estrutura-AtividadeRESUMO
The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by). NMS-P118 proved to be a potent, orally available, and highly selective PARP-1 inhibitor endowed with excellent ADME and pharmacokinetic profiles and high efficacy in vivo both as a single agent and in combination with Temozolomide in MDA-MB-436 and Capan-1 xenograft models, respectively. Cocrystal structures of 20by with both PARP-1 and PARP-2 catalytic domain proteins allowed rationalization of the observed selectivity.