Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944617

RESUMO

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Assuntos
Diester Fosfórico Hidrolases , Açúcares , Humanos , Diester Fosfórico Hidrolases/genética , Carboidratos , Glicoconjugados/química , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo
2.
Mol Cell Proteomics ; 21(5): 100201, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065273

RESUMO

Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host-parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF.


Assuntos
Brugia Malayi , Filariose Linfática , Animais , Filariose Linfática/diagnóstico , Filariose Linfática/parasitologia , Humanos , Imunoglobulina G , Macaca mulatta , Polissacarídeos
3.
Nature ; 509(7500): 385-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805238

RESUMO

Organisms are defined by the information encoded in their genomes, and since the origin of life this information has been encoded using a two-base-pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs). We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM), which is efficiently PCR-amplified and transcribed in vitro, and whose unique mechanism of replication has been characterized. However, expansion of an organism's genetic alphabet presents new and unprecedented challenges: the unnatural nucleoside triphosphates must be available inside the cell; endogenous polymerases must be able to use the unnatural triphosphates to faithfully replicate DNA containing the UBP within the complex cellular milieu; and finally, the UBP must be stable in the presence of pathways that maintain the integrity of DNA. Here we show that an exogenously expressed algal nucleotide triphosphate transporter efficiently imports the triphosphates of both d5SICS and dNaM (d5SICSTP and dNaMTP) into Escherichia coli, and that the endogenous replication machinery uses them to accurately replicate a plasmid containing d5SICS-dNaM. Neither the presence of the unnatural triphosphates nor the replication of the UBP introduces a notable growth burden. Lastly, we find that the UBP is not efficiently excised by DNA repair pathways. Thus, the resulting bacterium is the first organism to propagate stably an expanded genetic alphabet.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Código Genético/genética , Instabilidade Genômica/genética , Nucleotídeos/genética , Nucleotídeos/metabolismo , Biologia Sintética/métodos , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Pareamento de Bases , Meios de Cultura/química , Meios de Cultura/metabolismo , Meios de Cultura/farmacologia , Reparo do DNA , Replicação do DNA , Escherichia coli/efeitos dos fármacos , Código Genético/efeitos dos fármacos , Isoquinolinas/metabolismo , Naftalenos/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/química , Plasmídeos/biossíntese , Plasmídeos/genética , Tionas/metabolismo
4.
Glycobiology ; 28(11): 825-831, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137320

RESUMO

Glycosylation is the most common post-translational modification of serum proteins, and changes in the type and abundance of glycans in human serum have been correlated with a growing number of human diseases. While the glycosylation pattern of human serum is well studied, little is known about the profiles of other mammalian species. Here, we report detailed glycosylation profiling of canine serum by hydrophilic interaction chromatography-ultraperformance liquid chromatography (HILIC-UPLC) and mass spectrometry. The domestic dog (Canis familiaris) is a widely used model organism and of considerable interest for a large veterinary community. We found significant differences in the serum N-glycosylation profile of dogs compared to that of humans, such as a lower abundance of galactosylated and sialylated glycans. We also compare the N-glycan profile of canine serum to that of canine IgG - the most abundant serum glycoprotein. Our data will serve as a baseline reference for future studies when performing serum analyses of various health and disease states in dogs.


Assuntos
Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Animais , Cães , Glicoproteínas/sangue , Glicosilação , Humanos , Polissacarídeos/sangue
5.
FASEB J ; 30(10): 3501-3514, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27363426

RESUMO

Nematodes lack a heme biosynthetic pathway and must acquire heme from exogenous sources. Given the indispensable role of heme, this auxotrophy may be exploited to develop drugs that interfere with heme uptake in parasites. Although multiple heme-responsive genes (HRGs) have been characterized within the free-living nematode Caenorhabditis elegans, we have undertaken the first study of heme transport in Brugia malayi, a causative agent of lymphatic filariasis. Through functional assays in yeast, as well as heme analog, RNAi, and transcriptomic experiments, we have shown that the heme transporter B. malayi HRG-1 (BmHRG-1) is indeed functional in B. malayi In addition, BmHRG-1 localizes both to the endocytic compartments and cell membrane when expressed in yeast cells. Transcriptomic sequencing revealed that BmHRG-1, BmHRG-2, and BmMRP-5 (all orthologs of HRGs in C. elegans) are down-regulated in heme-treated B. malayi, as compared to non-heme-treated control worms. Likely because of short gene lengths, multiple exons, other HRGs in B. malayi (BmHRG-3-6) remain unidentified. Although the precise mechanisms of heme homeostasis in a nematode with the ability to acquire heme remains unknown, this study clearly demonstrates that the filarial nematode B. malayi is capable of transporting exogenous heme.-Luck, A. N., Yuan, X., Voronin, D., Slatko, B. E., Hamza, I., Foster, J. M. Heme acquisition in the parasitic filarial nematode Brugia malayi.


Assuntos
Brugia Malayi , Heme/imunologia , Homeostase/fisiologia , Animais , Caenorhabditis elegans , Interferência de RNA
6.
Proc Natl Acad Sci U S A ; 110(19): 7748-53, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610429

RESUMO

Lateral gene transfer events between bacteria and animals highlight an avenue for evolutionary genomic loss/gain of function. Herein, we report functional lateral gene transfer in animal parasitic nematodes. Members of the Nematoda are heme auxotrophs, lacking the ability to synthesize heme; however, the human filarial parasite Brugia malayi has acquired a bacterial gene encoding ferrochelatase (BmFeCH), the terminal step in heme biosynthesis. BmFeCH, encoded by a 9-exon gene, is a mitochondrial-targeted, functional ferrochelatase based on enzyme assays, complementation, and inhibitor studies. Homologs have been identified in several filariae and a nonfilarial nematode. RNAi and ex vivo inhibitor experiments indicate that BmFeCH is essential for viability, validating it as a potential target for filariasis control.


Assuntos
Brugia Malayi/enzimologia , Ferroquelatase/genética , Transferência Genética Horizontal , Animais , Animais Geneticamente Modificados , Teorema de Bayes , Brugia Malayi/genética , Caenorhabditis elegans/genética , Clonagem Molecular , Escherichia coli/metabolismo , Éxons , Feminino , Teste de Complementação Genética , Genoma , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Masculino , Microscopia Confocal , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Filogenia , Interferência de RNA
7.
Symbiosis ; 68: 145-155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110057

RESUMO

The filarial nematode Brugia malayi is one of the causative agents of lymphatic filariasis, a neglected tropical disease that affects 120 million people worldwide. The limited effectiveness of available anthelmintics and the absence of a vaccine have prompted extensive research on the interaction between Brugia and its obligate bacterial endosymbiont, Wolbachia. Recent studies suggest that Wolbachia is able to manipulate its nematode host immunity but relatively little is known about the immune system of filarial nematodes. Therefore, elucidation of the mechanisms underlying the immune system of B. malayi may be useful for understanding how the symbiotic relationship is maintained and help in the identification of new drug targets. In order to characterize the main genetic pathways involved in B. malayi immunity, we exposed adult female worms to two bacterial lysates (Escherichia coli and Bacillus amyloliquefaciens), dsRNA and dsDNA. We performed transcriptome sequencing of worms exposed to each immune elicitor at two different timepoints. Gene expression analysis of untreated and immune-challenged worms was performed to characterize gene expression patterns associated with each type of immune stimulation. Our results indicate that different immune elicitors produced distinct expression patterns in B. malayi, with changes in the expression of orthologs of well-characterized C. elegans immune pathways such as insulin, TGF-ß, and p38 MAPK pathways, as well as C-type lectins and several stress-response genes.

8.
BMC Genomics ; 16: 920, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26559510

RESUMO

BACKGROUND: Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. METHODS: Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. RESULTS: Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. CONCLUSIONS: The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts.


Assuntos
Dirofilaria immitis/genética , Dirofilaria immitis/metabolismo , Proteoma , Simbiose , Transcriptoma , Wolbachia/genética , Wolbachia/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Masculino , Especificidade de Órgãos/genética , Proteômica
9.
Dev Biol ; 384(1): 141-53, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24063805

RESUMO

Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5(m)C) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation.


Assuntos
Planárias/genética , Células-Tronco Pluripotentes/citologia , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular , Metilação de DNA , Planárias/metabolismo , Células-Tronco Pluripotentes/metabolismo
10.
BMC Genomics ; 15: 1041, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25433394

RESUMO

BACKGROUND: Dirofilaria immitis, or canine heartworm, is a filarial nematode parasite that infects dogs and other mammals worldwide. Current disease control relies on regular administration of anthelmintic preventives, however, relatively poor compliance and evidence of developing drug resistance could warrant alternative measures against D. immitis and related human filarial infections be taken. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont thought to be involved in providing certain critical metabolites to the nematode. Correlations between nematode and Wolbachia transcriptomes during development have not been examined. Therefore, we detailed the developmental transcriptome of both D. immitis and its Wolbachia (wDi) in order to gain a better understanding of parasite-endosymbiont interactions throughout the nematode life cycle. RESULTS: Over 215 million single-end 50 bp reads were generated from total RNA from D. immitis adult males and females, microfilariae (mf) and third and fourth-stage larvae (L3 and L4). We critically evaluated the transcriptomes of the various life cycle stages to reveal sex-biased transcriptional patterns, as well as transcriptional differences between larval stages that may be involved in larval maturation. Hierarchical clustering revealed both D. immitis and wDi transcriptional activity in the L3 stage is clearly distinct from other life cycle stages. Interestingly, a large proportion of both D. immitis and wDi genes display microfilarial-biased transcriptional patterns. Concurrent transcriptome sequencing identified potential molecular interactions between parasite and endosymbiont that are more prominent during certain life cycle stages. In support of metabolite provisioning between filarial nematodes and Wolbachia, the synthesis of the critical metabolite, heme, by wDi appears to be synchronized in a stage-specific manner (mf-specific) with the production of heme-binding proteins in D. immitis. CONCLUSIONS: Our integrated transcriptomic study has highlighted interesting correlations between Wolbachia and D. immitis transcription throughout the life cycle and provided a resource that may be used for the development of novel intervention strategies, not only for the treatment and prevention of D. immitis infections, but of other closely related human parasites as well.


Assuntos
Dirofilaria immitis/genética , Microfilárias/genética , Simbiose/genética , Wolbachia/genética , Animais , Dirofilaria immitis/patogenicidade , Dirofilariose/genética , Dirofilariose/parasitologia , Cães , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Masculino , Microfilárias/parasitologia , Wolbachia/patogenicidade
11.
Front Microbiol ; 15: 1418032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832111

RESUMO

Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.

12.
Front Microbiol ; 15: 1352378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426058

RESUMO

Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.

13.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38030223

RESUMO

RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples.


Assuntos
Algoritmos , RNA , Animais , Humanos , RNA/genética , Metilação , Análise de Sequência de RNA
14.
BMC Genomics ; 14: 639, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053607

RESUMO

BACKGROUND: Lymphatic filariasis is a neglected tropical disease afflicting more than 120 million people, while another 1.3 billion people are at risk of infection. The nematode worm Brugia malayi is one of the causative agents of the disease and exists in a mutualistic symbiosis with Wolbachia bacteria. Since extensive lateral gene transfer occurs frequently between Wolbachia and its hosts, we sought to measure the extent of such LGT in B. malayi by whole genome sequencing of Wolbachia-depleted worms. RESULTS: A considerable fraction (at least 115.4-kbp, or 10.6%) of the 1.08-Mbp Wolbachia wBm genome has been transferred to its nematode host and retains high levels of similarity, including 227 wBm genes and gene fragments. Complete open reading frames were transferred for 32 of these genes, meaning they have the potential to produce functional proteins. Moreover, four transfers have evidence of life stage-specific regulation of transcription at levels similar to other nematode transcripts, strengthening the possibility that they are functional. CONCLUSIONS: There is extensive and ongoing transfer of Wolbachia DNA to the worm genome and some transfers are transcribed in a stage-specific manner at biologically relevant levels.


Assuntos
Brugia Malayi/genética , Transferência Genética Horizontal , Wolbachia/genética , Animais , DNA Bacteriano/genética , Genoma Bacteriano , Genoma Helmíntico , Fases de Leitura Aberta , Análise de Sequência de DNA
15.
Sci Rep ; 13(1): 7951, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193733

RESUMO

N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.


Assuntos
Brugia Malayi , Animais , Humanos , Masculino , Feminino , Brugia Malayi/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Microfilárias/genética , Microfilárias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo
16.
Front Immunol ; 14: 1102344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949937

RESUMO

Parasitic nematodes responsible for filarial diseases cause chronic disablement in humans worldwide. Elimination programs have substantially reduced the rate of infection in certain areas, but limitations of current diagnostics for population surveillance have been pointed out and improved assays are needed to reach the elimination targets. While serological tests detecting antibodies to parasite antigens are convenient tools, those currently available are compromised by the occurrence of antibodies cross-reactive between nematodes, as well as by the presence of residual antibodies in sera years after treatment and clearance of the infection. We recently characterized the N-linked and glycosphingolipid derived glycans of the parasitic nematode Brugia malayi and revealed the presence of various antigenic structures that triggered immunoglobulin G (IgG) responses in infected individuals. To address the specificity of IgG binding to these glycan antigens, we screened microarrays containing Brugia malayi glycans with plasma from uninfected individuals and from individuals infected with Loa loa, Onchocerca volvulus, Mansonella perstans and Wuchereria bancrofti, four closely related filarial nematodes. IgG to a restricted subset of cross-reactive glycans was observed in infection plasmas from all four species. In plasma from Onchocerca volvulus and Mansonella perstans infected individuals, IgG binding to many more glycans was additionally detected, resulting in total IgG responses similar to the ones of Brugia malayi infected individuals. For these infection groups, Brugia malayi, Onchocerca volvulus and Mansonella perstans, we further studied the different IgG subclasses to Brugia malayi glycans. In all three infections, IgG1 and IgG2 appeared to be the major subclasses involved in response to glycan antigens. Interestingly, in Brugia malayi infected individuals, we observed a marked reduction in particular in IgG2 to parasite glycans post-treatment with anthelminthic, suggesting a promising potential for diagnostic applications. Thus, we compared the IgG response to a broad repertoire of Brugia malayi glycans in individuals infected with various filarial nematodes. We identified broadly cross-reactive and more specific glycan targets, extending the currently scarce knowledge of filarial nematode glycosylation and host anti-glycan antibody response. We believe that our initial findings could be further exploited to develop disease-specific diagnostics as part of an integrated approach for filarial disease control.


Assuntos
Brugia Malayi , Filariose , Humanos , Animais , Anticorpos Anti-Helmínticos , Antígenos , Imunoglobulina G
17.
Symbiosis ; 58(1-3): 201-207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23482460

RESUMO

Wolbachia endosymbionts are widespread in arthropods and are generally considered reproductive parasites, inducing various phenotypes including cytoplasmic incompatibility, parthenogenesis, feminization and male killing, which serve to promote their spread through populations. In contrast, Wolbachia infecting filarial nematodes that cause human diseases, including elephantiasis and river blindness, are obligate mutualists. DNA purification methods for efficient genomic sequencing of these unculturable bacteria have proven difficult using a variety of techniques. To efficiently capture endosymbiont DNA for studies that examine the biology of symbiosis, we devised a parallel strategy to an earlier array-based method by creating a set of SureSelect™ (Agilent) 120-mer target enrichment RNA oligonucleotides ("baits") for solution hybrid selection. These were designed from Wolbachia complete and partial genome sequences in GenBank and were tiled across each genomic sequence with 60 bp overlap. Baits were filtered for homology against host genomes containing Wolbachia using BLAT and sequences with significant host homology were removed from the bait pool. Filarial parasite Brugia malayi DNA was used as a test case, as the complete sequence of both Wolbachia and its host are known. DNA eluted from capture was size selected and sequencing samples were prepared using the NEBNext® Sample Preparation Kit. One-third of a 50 nt paired-end sequencing lane on the HiSeq™ 2000 (Illumina) yielded 53 million reads and the entirety of the Wolbachia genome was captured. We then used the baits to isolate more than 97.1 % of the genome of a distantly related Wolbachia strain from the crustacean Armadillidium vulgare, demonstrating that the method can be used to enrich target DNA from unculturable microbes over large evolutionary distances.

18.
Sci Rep ; 12(1): 15763, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131114

RESUMO

Serum N-glycan profiling studies during the past decades have shown robust associations between N-glycan changes and various biological conditions, including infections, in humans. Similar studies are scarcer for other mammals, despite the tremendous potential of serum N-glycans as biomarkers for infectious diseases in animal models of human disease and in the veterinary context. To expand the knowledge of serum N-glycan profiles in important mammalian model systems, in this study, we combined MALDI-TOF-MS analysis and HILIC-UPLC profiling of released N-glycans together with glycosidase treatments to characterize the glycan structures present in rhesus macaque serum. We used this baseline to monitor changes in serum N-glycans during infection with Brugia malayi, a parasitic nematode of humans responsible for lymphatic filariasis, in a longitudinal cohort of infected rhesus macaques. Alterations of the HILIC-UPLC profile, notably of abundant structures, became evident as early as 5 weeks post-infection. Given its prominent role in the immune response, contribution of immunoglobulin G to serum N-glycans was investigated. Finally, comparison with similar N-glycan profiling performed during infection with the dog heartworm Dirofilaria immitis suggests that many changes observed in rhesus macaque serum N-glycans are specific for lymphatic filariasis.


Assuntos
Brugia Malayi , Dirofilaria immitis , Filariose Linfática , Animais , Biomarcadores , Dirofilaria immitis/fisiologia , Cães , Filariose Linfática/parasitologia , Glicosídeo Hidrolases , Humanos , Imunoglobulina G , Macaca mulatta , Mamíferos , Polissacarídeos
19.
PLoS Negl Trop Dis ; 15(1): e0008935, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406151

RESUMO

Brugia malayi is a human filarial nematode responsible for elephantiasis, a debilitating condition that is part of a broader spectrum of diseases called filariasis, including lymphatic filariasis and river blindness. Almost all filarial nematode species infecting humans live in mutualism with Wolbachia endosymbionts, present in somatic hypodermal tissues but also in the female germline which ensures their vertical transmission to the nematode progeny. These α-proteobacteria potentially provision their host with essential metabolites and protect the parasite against the vertebrate immune response. In the absence of Wolbachia wBm, B. malayi females become sterile, and the filarial nematode lifespan is greatly reduced. In order to better comprehend this symbiosis, we investigated the adaptation of wBm to the host nematode soma and germline, and we characterized these cellular environments to highlight their specificities. Dual RNAseq experiments were performed at the tissue-specific and ovarian developmental stage levels, reaching the resolution of the germline mitotic proliferation and meiotic differentiation stages. We found that most wBm genes, including putative effectors, are not differentially regulated between infected tissues. However, two wBm genes involved in stress responses are upregulated in the hypodermal chords compared to the germline, indicating that this somatic tissue represents a harsh environment to which wBm have adapted. A comparison of the B. malayi and C. elegans germline transcriptomes reveals a poor conservation of genes involved in the production of oocytes, with the filarial germline proliferative zone relying on a majority of genes absent from C. elegans. The first orthology map of the B. malayi genome presented here, together with tissue-specific expression enrichment analyses, indicate that the early steps of oogenesis are a developmental process involving genes specific to filarial nematodes, that likely result from evolutionary innovations supporting the filarial parasitic lifestyle.


Assuntos
Evolução Biológica , Brugia Malayi/genética , Carisoprodol , Elefantíase/genética , Células Germinativas , Animais , Caenorhabditis elegans , Filariose Linfática/genética , Feminino , Expressão Gênica , Genoma , Humanos , Oogênese , Análise de Sequência de RNA , Simbiose , Wolbachia/fisiologia
20.
PLoS Negl Trop Dis ; 15(10): e0009838, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705823

RESUMO

The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.


Assuntos
Brugia/genética , Variação Genética , Cromossomo X/genética , Animais , Brugia/classificação , Aberrações Cromossômicas , Genoma Helmíntico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA