RESUMO
Industrial processes typically produce large wastewater volumes, which, if left untreated, greatly affect receiving ecosystems. However, wastewater treatment can be costly and energy-intensive, with the developing world particularly struggling with wastewater management. As such, simple and cost-effective solutions are urgently required with the passive (no energy or reagents) co-treatment of different wastewater matrices holding great promise. Here, wastewater from a phosphorus recovery system (chemical precipitation) was co-treated with acid mine drainage (AMD). Specifically, phosphorus-rich municipal wastewater was treated with hydrated lime, as to synthesize a wastewater-derived phosphorus product, i.e., calcium phosphate (Ca3(PO4)2), also producing a phosphorous-depleted alkaline effluent. The feasibility of valorising this effluent is examined here by using it for the passive co-treatment of real AMD. Different liquid-to-liquid (v/v) ratios were considered, with the optimum ratio (AMD to phosphate-depleted wastewater) being 1:9. The pH of the co-treated effluent was adjusted to 8.4 (from an initial value of 11.5 in the phosphorus-depleted wastewater and 2.2 in AMD), while metals (â¼100% reduction of Fe, Mn, Ni, Cu, Pb, ≥99.5 for Al, Zn, and Mg, 80% for Cr, and 75% for As) and sulphate (89.26% reduction) contained in AMD were greatly removed. This was also the case for the remaining orthophosphate that was contained in the phosphorus-depleted wastewater (93.75% reduction). The electrical conductivity was also reduced in both the AMD (88.75%) and the phosphorus-depleted wastewater (69.21%), suggesting the removal of contaminants from both matrices. Results were underpinned by state-of-the-art analytical techniques, including FE-SEM/FIB/EDX, FTIR, and XRD, along with geochemical modelling (PHREEQC). Contaminants were removed through complexation, (co)adsorption, crystallization, and (co)precipitation. Overall, results suggest that the co-treatment of these wastewater matrices is feasible and could be directly scaled up (e.g., using waste stabilization ponds), while opportunities for the beneficiation of the produced sludge and for water reclamation (e.g., through membrane filtration) could also arise, further promoting the sustainably of this passive co-treatment method.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Fósforo , Ecossistema , Mineração , Fosfatos , Poluentes Químicos da Água/químicaRESUMO
Phosphate and nitrate enrichment largely impair aquatic ecosystem functions and services, thus comprising an emerging problem of environmental concern. The problem pertains to developing countries where their discharge to surface water is on the rise due to a rapid growth in population. Herein, these pollutants (phosphate and ammonia) were removed from real municipal wastewater using a simple, fast, and cost-effective process. Raw cryptocrystalline magnesite, a mineral abundant in South Africa, was simply milled and calcined (mechano-thermo processing) in order to produce the activated magnesite (feed). The feed was then used in batch processing for pollutants adsorption and precipitation from real wastewater. The process was optimised by varying the treatment or contact time, feed dosage, concentration, pH, and temperature. The feed and product mineral (produced sludge) were characterised using X-ray Diffraction (XRD), field emission scanning electron microscopy (FESEM) compatible with energy dispersive spectroscopy (EDS), and Fourier Transform Infrared Spectrometer (FTIR). It was identified that the optimal conditions differed for each pollutant, highlighting the importance of tailoring the process to fit the local wastewater characteristics and as part of a treatment train system. Specifically, maximum P removal was achieved after 5â¯min of mixing, using 1â¯g â¯L-1 of feed, 123â¯mg â¯L-1 initial phosphate concentration, pH 8 - 10, and was not affected by temperature variations; whereas, for ammonia removal, optimal conditions were 180 â¯min, 16â¯g⯠L-1 feed dosage, 80â¯mg â¯L-1 initial concentration, pH 10 and temperature > 45⯰C. The optimal conditions for the removal of both pollutants from real wastewater were 30â¯min, 6â¯g â¯L-1 dosage, and ambient temperature and pH. Furthermore, Mg and Ca concentration was found to influence the process. Reduction in total dissolved solids (TDS) and electrical conductivity (EC) suggest an attenuation of chemical species. Characterisation revealed that the product mineral obtained under the optimal conditions for pollutants removal is rich in quartz, periclase, brucite, calcite, magnesite, and struvite. This was further supported by the FTIR results, which indicated the presence of Mg-O, PO43-, N-H and OH stretches. In addition, the EDS verified the presence of Mg, Ca and P in product mineral. Results are suggestive of the high efficiency of the mechano-thermo activated magnesite treatment process for phosphate and ammonia removal and struvite crystallization. Thus, this technology could valorise municipal wastewater effluents and open new horizons for the effective and sustainable management of wastewater effluents, since struvite can replace the mined phosphate fertilizers, which are rapidly depleting, in the agriculture industry.
Assuntos
Fosfatos , Águas Residuárias , Amônia , Precipitação Química , Ecossistema , Magnésio , África do Sul , EstruvitaRESUMO
The co-management of different wastewater matrices can lead to synergistic effects in terms of pollutants removal. Here, the co-treatment of real municipal wastewater (MWW) and acid mine drainage (AMD) is comprehensively examined. Under the identified optimum co-treatment condition, i.e., 15 min contact time, 1:7 AMD to MWW liquid-to-liquid ratio, and ambient temperature and pH, the metal content of AMD (e.g., Al, Fe, Mn, Zn) was grossly (~95%) reduced along with sulphate (~92%), while MWW's phosphate content was practically removed (≥99%). The PHREEQC geochemical model predicted the formation of (oxy)-hydroxides, (oxy)-hydro-sulphates, metals hydroxides, and other mineral phases in the produced sludge, which were confirmed using state-of-the-art analytical techniques such as FE-SEM-EDS and XRD. The key mechanisms governing pollutants removal include dilution, precipitation, co-precipitation, adsorption, and crystallization. Beneficiation and valorisation of the produced sludge and co-treated effluent could promote resource recovery paradigms in wastewater management. Overall, the co-treatment of AMD and MWW appear to be feasible, yet not practical due to the excessive volume of MWW that is required to attain the desired treatment quality. Future research could focus on chemical addition for the control of the pH and the use of (photo)-Fenton for enhancing treatment efficiency.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Mineração , Fosfatos , Esgotos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análiseRESUMO
This dataset manuscript describes the preparation procedure and lists the preconcentration efficiency of 112 ligands, immobilized on solid-state polymer membranes, for pollutants/elements monitoring in tap water and in environmentally relevant water matrices. Specifically, the energy dispersive X-ray fluorescence (EDXRF) spectra are presented, along with the preconcentration efficiency of each ligand in tap water. The main materials required for membrane preparation include the membrane matrix, a plasticizer, an ionophore, a catalyst (used only when producing anion-selective membranes), and a complexing agent, i.e. ligand. These are simply mixed, applied on a desired surface, here on a BoPET (biaxially-oriented polyethylene terephthalate) film (Mylar®), and left to dry and solidify, producing anion- or cation-selective membranes. Once the membranes are produced, they can be used even by non-specialised personnel directly on the field, which could be of particular importance for low and middle income countries (LMIC) and for remote or insular areas. The membranes can be functionalised with different ligands, suggesting that they can be used for identifying a vast array of different pollutants/elements in water matrices. Here a dataset of 112 ligands, immobilized on anion-selective membranes, are presented in terms of calcium (Ca), iron (Fe), nickel (Ni), zinc (Zn), antimony (Sb), lanthanum (La), uranium (U), copper (Cu), and gold (Au) preconcentration in tap water. Strontium (Sr) was also attempted to be measured, however, quantifiable results were not obtained. Furthermore, data for mercury (Hg) preconcentration, in cation-selective membranes, are also given. The enclosed data show that the most promising ligand for Hg, Ca, Fe, Ni, Zn, Sr, La, U, Cu, and Au preconcentration were 4-(2-Pyridylazo)resorcinol, Eriochrome Black T, di-Ammonium hydrogen citrate, 1,5-Diphenylcarbazide, dithizone, 1,1'-Carbonyldiimidazole, Bis(cyclopentadienyl)titanium dichloride, sodium dibenzyldithiocarbamate, calconcarbonsaure, and dibenzoylmethane, respectively. Interpretation of the data can be found in our previous work [1]. Overall, the main intention of this dataset manuscript is to communicate and promote the adoption of the proposed method by researchers and the water industry alike. This could further advance the method and encourage the assessment of additional ligands or/and pollutants/elements, including heavy metals which are typically found in water.
RESUMO
The life cycle assessment of several zinc oxide (ZnO) nanostructures, fabricated by a facile microwave technique, is presented. Key synthesis parameters such as annealing temperature, varied from 90°C to 220°C, and microwave power, varied from 110W to 710W, are assessed. The effect of these parameters on both the structural characteristics and the environmental sustainability of the nanostructures is examined. The nanostructures were characterized by means of X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), ultraviolet-visible spectroscopy (UV-Vis), Photoluminescence (PL) and Brunauer-Emmett-Teller (BET) analysis. Crystalline size was found to be 22.40nm at 110W microwave power, 24.83nm at 310W, and 24.01nm at 710W. Microwave power and synthesis temperature were both directly proportional to the surface area. At 110W the surface area was 10.44m2/g, at 310W 12.88m2/g, and at 710W 14.60m2/g; while it was found to be 11.64m2/g at 150°C and 18.09m2/g at 220°C. Based on these, a life cycle analysis (LCA) of the produced ZnO nanoparticles was carried out, using the ZnO surface area (1m2/g) as the functional unit. It was found that the main environmental weaknesses identified during the production process were; (a) the use of ethanol for purifying the produced nanomaterials and (b) the electricity consumption for the ZnO calcination, provided by South Africa's fossil-fuel dependent electricity source. When the effect of the key synthesis parameters on environmental sustainability was examined it was found that an increase of either microwave power (from 110 to 710W) or synthesis temperatures (from 90 to 220°C), results in higher sustainability, with the environmental footprint reduced by 27% and 41%, respectively. Through a sensitivity analysis, it was observed that an electricity mix based on renewable energy could improve the environmental sustainability of the nanoparticles by 25%.
RESUMO
This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1m(3) of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system.