Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29290465

RESUMO

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Assuntos
Apoptose , Glutationa Peroxidase/metabolismo , Convulsões/metabolismo , Selênio/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Glutationa Peroxidase/genética , Células HEK293 , Humanos , Peróxido de Hidrogênio/toxicidade , Interneurônios/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Convulsões/etiologia
2.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768885

RESUMO

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Assuntos
Alquil e Aril Transferases/genética , RNA de Transferência/metabolismo , Selenoproteínas/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
3.
J Biol Chem ; 294(39): 14185-14200, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31350336

RESUMO

Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.


Assuntos
Erros Inatos do Metabolismo/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA/metabolismo , Selenoproteínas/biossíntese , Animais , Sítios de Ligação , Encéfalo/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Selenocisteína/metabolismo
4.
Nucleic Acids Res ; 45(7): 4094-4107, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27956496

RESUMO

Dual-assignment of codons as termination and elongation codons is used to expand the genetic code. In mammals, UGA can be reassigned to selenocysteine during translation of selenoproteins by a mechanism involving a 3΄ untranslated region (UTR) selenocysteine insertion sequence (SECIS) and the SECIS-binding protein Secisbp2. Here, we present data from ribosome profiling, RNA-Seq and mRNA half-life measurements that support distinct roles for Secisbp2 in UGA-redefinition and mRNA stability. Conditional deletions of the Secisbp2 and Trsp (tRNASec) genes in mouse liver were compared to determine if the effects of Secisbp2 loss on selenoprotein synthesis could be attributed entirely to the inability to incorporate Sec. As expected, tRNASec depletion resulted in loss of ribosome density downstream of all UGA-Sec codons. In contrast, the absence of Secisbp2 resulted in variable effects on ribosome density downstream of UGA-Sec codons that demonstrate gene-specific differences in Sec incorporation. For several selenoproteins in which loss of Secisbp2 resulted in greatly diminished mRNA levels, translational activity and Sec incorporation efficiency were shown to be unaffected on the remaining RNA. Collectively, these results demonstrate that Secisbp2 is not strictly required for Sec incorporation and has a distinct role in stabilizing mRNAs that can be separated from its effects on UGA-redefinition.


Assuntos
Códon de Terminação , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA de Transferência Aminoácido-Específico/genética , Proteínas de Ligação a RNA/fisiologia , Selenoproteínas/genética , Animais , Células Cultivadas , Hepatócitos/metabolismo , Masculino , Metilação , Camundongos , Camundongos Knockout , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Selenoproteínas/biossíntese
5.
FASEB J ; 30(11): 3669-3681, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27473727

RESUMO

Selenocysteine is the 21st proteinogenic amino acid in mammals. The human genome contains 25 genes encoding selenoproteins, and their significance for human health is increasingly recognized through the identification of patients with inborn errors in selenoprotein biosynthetic factors or in individual selenoproteins. Mutations in selenoprotein N (SEPN1) lead to a spectrum of disorders collectively called SEPN1-related myopathy, and mutations in glutathione peroxidase 4 (GPX4) cause respiratory failure and bone defects, and mutations in thioredoxin reductase 2 (TXNRD2) are associated with familial glucocorticoid deficiency. Pathogenic mutations in selenocysteine synthase (SEPSECS) cause neurodevelopmental disorders, but also other factors epistatic to selenoprotein biosynthesis, such as SECIS-binding protein 2 (SECISBP2) and tRNA[Ser]Sec, are known to cause complex disorders. Mutations in the latter 2 genes involve impaired metabolism and action of thyroid hormones, which lead to delayed bone growth and maturation. Mutations in SECISBP2 sometimes affect nervous system development, muscle, inner ear, skin, and immune system function, underlining the significance of selenoproteins for the organism. Mouse models helped to delineate the functions of selenoproteins and explain pathomechanisms. For brevity, this review is focused on human genetic disorders associated with selenoprotein deficiency and only briefly touches on health effects of nutritional selenium deficiency.-Schweizer, U., Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism.


Assuntos
Predisposição Genética para Doença , Erros Inatos do Metabolismo/genética , Selênio/deficiência , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Animais , Humanos , Mutação/genética , Selênio/metabolismo , Selenocisteína/genética , Selenoproteínas/genética
6.
RNA Biol ; 14(9): 1197-1208, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28277934

RESUMO

Base 37 in tRNA, 3'-adjacent to the anticodon, is occupied by a purine base that is thought to stabilize codon recognition by stacking interactions on the first Watson-Crick base pair. If the first codon position forms an A.U or U.A base pair, the purine is likely further modified in all domains of life. One of the first base modifications found in tRNA is N6-isopentenyl adenosine (i6A) present in a fraction of tRNAs in bacteria and eukaryotes, which can be further modified to 2-methyl-thio-N6-isopentenyladenosine (ms2i6A) in a subset of tRNAs. Homologous tRNA isopentenyl transferase enzymes have been identified in bacteria (MiaA), yeast (Mod5, Tit1), roundworm (GRO-1), and mammals (TRIT1). In eukaryotes, isopentenylation of cytoplasmic and mitochondrial tRNAs is mediated by products of the same gene. Accordingly, a patient with homozygous mutations in TRIT1 has mitochondrial disease. The role of i6A in a subset of tRNAs in gene expression has been linked with translational fidelity, speed of translation, skewed gene expression, and non-sense suppression. This review will not cover the action of i6A as a cytokinin in plants or the potential function of Mod5 as a prion in yeast.


Assuntos
Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Anticódon , Bactérias/genética , Bactérias/metabolismo , Códon , Suscetibilidade a Doenças , Humanos , Isopenteniladenosina/química , Metilação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Purinas/química , Purinas/metabolismo , RNA de Transferência/química , Relação Estrutura-Atividade , Especificidade por Substrato , Leveduras/genética , Leveduras/metabolismo
7.
Biomolecules ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291713

RESUMO

Co-translational incorporation of selenocysteine (Sec) into selenoproteins occurs at UGA codons in a process in which translational elongation competes with translational termination. Selenocysteine insertion sequence-binding protein 2 (SECISBP2) greatly enhances Sec incorporation into selenoproteins by interacting with the mRNA, ribosome, and elongation factor Sec (EFSEC). Ribosomal profiling allows to study the process of UGA re-coding in the physiological context of the cell and at the same time for all individual selenoproteins expressed in that cell. Using HAP1 cells expressing a mutant SECISBP2, we show here that high-resolution ribosomal profiling can be used to assess read-through efficiency at the UGA in all selenoproteins, including those with Sec close to the C-terminus. Analysis of ribosomes with UGA either at the A-site or the P-site revealed, in a transcript-specific manner, that SECISBP2 helps to recruit tRNASec and stabilize the mRNA. We propose to assess the effect of any perturbation of UGA read-through by determining the proportion of ribosomes carrying UGA in the P-site, pUGA. An additional, new observation is frameshifting that occurred 3' of the UGA/Sec codon in SELENOF and SELENOW in SECISBP2-mutant HAP1 cells, a finding corroborated by reanalysis of neuron-specific Secisbp2R543Q-mutant brains.


Assuntos
Elementos de DNA Transponíveis , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Códon de Terminação/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo
8.
Front Neurosci ; 15: 652099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732108

RESUMO

Eighteen years ago, unexpected epileptic seizures in Selenop-knockout mice pointed to a potentially novel, possibly underestimated, and previously difficult to study role of selenium (Se) in the mammalian brain. This mouse model was the key to open the field of molecular mechanisms, i.e., to delineate the roles of selenium and individual selenoproteins in the brain, and answer specific questions like: how does Se enter the brain; which processes and which cell types are dependent on selenoproteins; and, what are the individual roles of selenoproteins in the brain? Many of these questions have been answered and much progress is being made to fill remaining gaps. Mouse and human genetics have together boosted the field tremendously, in addition to traditional biochemistry and cell biology. As always, new questions have become apparent or more pressing with solving older questions. We will briefly summarize what we know about selenoproteins in the human brain, glance over to the mouse as a useful model, and then discuss new questions and directions the field might take in the next 18 years.

9.
Redox Biol ; 48: 102188, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34794077

RESUMO

Selenoproteins are a small family of proteins containing the trace element selenium in form of the rare amino acid selenocysteine (Sec), which is decoded by the UGA codon. In humans, a number of pathogenic variants in genes encoding distinct selenoproteins or selenoprotein biosynthesis factors have been identified. Pathogenic variants in selenocysteine synthase (SEPSECS), which catalyzes the last step in Sec-tRNA[Ser]Sec biosynthesis, were reported in children suffering from progressive cerebello-cerebral atrophy. To understand the pathomechanism associated with SEPSECS deficiency, we generated a novel mouse model recapitulating the respective human pathogenic p.Y334C variant in the murine Sepsecs gene (SepsecsY334C). Unlike in patients, pups homozygous for the p.Y334C variant died perinatally with signs of cardio-respiratory failure. Perinatal death is reminiscent of the Sedaghatian spondylometaphyseal dysplasia disorder in humans, which is caused by pathogenic variants in the gene encoding the selenoprotein and key ferroptosis regulator glutathione peroxidase 4 (GPX4). Protein expression levels of distinct selenoproteins in SepsecsY334C/Y334C mice were found to be generally reduced in brain and isolated cortical neurons, while transcriptomics analysis uncovered an upregulation of NRF2-regulated genes. Crossbreeding of SepsecsY334C/Y334C mice with mice harboring a targeted mutation of the catalytically active Sec to Cys in GPX4 rescued perinatal death of SepsecsY334C/Y334C mice, showing that the cardio-respiratory defects of SepsecsY334C/Y334C mice were caused by the lack of GPX4. Like in SepsecsY334C/Y334C mice, selenoprotein expression levels remained low and NRF2-regulated genes remained highly expressed in these compound mutant mice, indicating that selenium-independent GPX4, along with a sustained antioxidant response are sufficient to compensate for dysfunctional Sec-tRNA[Ser]Sec biosynthesis. Our findings imply that children with pathogenic variants in SEPSECS or GPX4 may even benefit from treatments that incompletely compensate for impaired GPX4 activity.

10.
Free Radic Biol Med ; 127: 206-214, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29709707

RESUMO

In its 200 years of history, selenium has been defined first as a toxic element and finally as a micronutrient. Selenium is incorporated into selenoproteins as selenocysteine (Sec), the 21st proteinogenic amino acid codified by a stop codon. Specific biosynthetic factors recode UGA stop codon as Sec. The significance of selenoproteins in human health is manifested through the identification of patients with inborn errors in selenoproteins or their biosynthetic factors. Selenoprotein N-related myopathy was the first disease identified due to mutations in a selenoprotein gene. Mutations in GPX4 were linked to Sedaghatian disease, characterized by bone and brain anomalies and cardiorespiratory failure. Mutations in TXNRD2 produced familial glucocorticoid deficiency (FGD) and dilated cardiomyopathy (DCM). Genetic generalized epilepsy was associated with mutations in TXNRD1 gene. Mutations in biosynthetic factors as SEPSECS, SECISBP2 and even tRNA[Ser]Sec, have been also related to diseases. Thus, SEPSECS mutations produce a neurodegenerative disease called now pontocerebellar hypoplasia type 2D (PCH2D). SECISBP2 syndrome, caused by SECISBP2 mutations, is a multifactorial disease affecting mainly thyroid metabolism, bone, inner ear and muscle. Similar symptoms were reproduced in a patient carrying a mutation in tRNA[Ser]Sec gene, TRU-TCA1-1. This review describes human genetic disorders caused by selenoprotein deficiency. Human phenotypes will be compared with mouse models to explain the pathologic mechanisms of lack of selenoproteins.


Assuntos
Predisposição Genética para Doença/genética , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Humanos , Mutação , Biossíntese de Proteínas/genética
11.
Free Radic Biol Med ; 106: 270-277, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28232204

RESUMO

Increased oxidative stress has been widely implicated in the pathogenesis in various forms of human epilepsy. Here, we report a homozygous mutation in TXNRD1 (thioredoxin reductase 1) in a family with genetic generalized epilepsy. TXNRD1 is an essential selenium-containing enzyme involved in detoxification of reactive oxygen species (ROS) and redox signaling. The TXNRD1 mutation p.Pro190Leu affecting a highly conserved amino acid residue was identified by whole-exome sequencing of blood DNA from the index patient. The detected mutation and its segregation within the family - all siblings of the index patient were homozygous and the parents heterozygous - were confirmed by Sanger sequencing. TXNRD1 activity was determined in subcellular fractions from a skeletal muscle biopsy and skin fibroblasts of the index patient and the expression levels of the mutated protein were assessed by 75Se labeling and Western blot analysis. As result of the mutation, the activity of TXNRD1 was reduced in the patient's fibroblasts and skeletal muscle (to 34±3% and 16±8% of controls, respectively). In fibroblasts, we detected reduced 75Se-labeling of the enzyme (41±3% of controls). An in-depth in vitro kinetic analysis of the recombinant mutated TXNRD1 indicated 30-40% lowered kcat/Se values. Therefore, a reduced activity of the enzyme in the patient's tissue samples is explained by (i) lower enzyme turnover and (ii) reduced abundance of the mutated enzyme as confirmed by Western blotting and 75Se labeling. The mutant fibroblasts were also found to be less resistant to a hydrogen peroxide challenge. Our data agree with a potential role of insufficient ROS detoxification for disease manifestation in genetic generalized epilepsy.


Assuntos
Epilepsia Generalizada/genética , Predisposição Genética para Doença , Estresse Oxidativo/genética , Tiorredoxina Redutase 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia Generalizada/fisiopatologia , Feminino , Glutationa/metabolismo , Homozigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Espécies Reativas de Oxigênio/metabolismo , Sequenciamento do Exoma
12.
Antioxid Redox Signal ; 17(6): 902-13, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22369680

RESUMO

AIMS: We have tested the hypothesis that selenium (Se)-containing antioxidative enzymes protect thyroid epithelial cells from oxidative damage associated with enzymatic production of hydrogen peroxide required for thyroid hormone biosynthesis. Thyroid epithelial cells therefore express antioxidative enzymes, including catalase, peroxiredoxins, thioredoxin reductases, and glutathione peroxidases (GPxs). The latter two enzyme families contain highly active peroxide-degrading enzymes that carry selenocysteine (Sec) in their active centers. Since low Se status has been associated with thyroid disorders, selenoproteins are considered essential for thyroid integrity and function. We have conditionally inactivated selenoprotein biosynthesis in thyrocytes by targeting Sec tRNA. RESULTS: Constitutive and inducible Cre/loxP-mediated recombination of tRNA([Ser]Sec) drastically reduced activities of selenoenzymes GPx and type I-deiodinase in thyroid extracts. Immunohistochemical staining revealed increased 4-hydroxynonenal and 3-nitro-tyrosine levels consistent with increased oxidative stress. However, gross thyroid morphology remained intact for at least 6 months after recombination. Circulating thyroid hormone levels remained normal in mutant mice, while thyrotropin (TSH) levels were moderately elevated. Challenging mutant mice with low iodine diet increased TSH, but did not lead to destruction of selenoprotein-deficient thyroids. INNOVATION: This is the first report probing the assumed physiological roles of selenoproteins in the thyroid using a genetic loss-of-function approach. CONCLUSION: We conclude that selenoproteins protect thyrocytes from oxidative damage and modulate thyroid hormone biosynthesis, but are not essential for thyrocyte survival.


Assuntos
Células Epiteliais/metabolismo , Selenoproteínas/deficiência , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Animais , Catalase/genética , Catalase/metabolismo , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA