Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2313258121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300869

RESUMO

We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.

2.
Proc Natl Acad Sci U S A ; 121(7): e2312775121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324570

RESUMO

Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble into T = 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled to kBT precision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distinct hierarchical assembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures.


Assuntos
Capsídeo , Ciência dos Materiais , Capsídeo/metabolismo , Proteínas do Capsídeo/química , DNA/química , Cinética , Termodinâmica , Montagem de Vírus , Ciência dos Materiais/métodos
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086931

RESUMO

We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.


Assuntos
Actinas/metabolismo , Microtúbulos/metabolismo , Movimento/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Actinas/química , Citoesqueleto/fisiologia , Humanos , Microtúbulos/química , Microtúbulos/fisiologia , Contração Muscular/fisiologia
4.
Proc Natl Acad Sci U S A ; 119(43): e2207902119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252043

RESUMO

Self-assembly is one of the most promising strategies for making functional materials at the nanoscale, yet new design principles for making self-limiting architectures, rather than spatially unlimited periodic lattice structures, are needed. To address this challenge, we explore the tradeoffs between addressable assembly and self-closing assembly of a specific class of self-limiting structures: cylindrical tubules. We make triangular subunits using DNA origami that have specific, valence-limited interactions and designed binding angles, and we study their assembly into tubules that have a self-limited width that is much larger than the size of an individual subunit. In the simplest case, the tubules are assembled from a single component by geometrically programming the dihedral angles between neighboring subunits. We show that the tubules can reach many micrometers in length and that their average width can be prescribed through the dihedral angles. We find that there is a distribution in the width and the chirality of the tubules, which we rationalize by developing a model that considers the finite bending rigidity of the assembled structure as well as the mechanism of self-closure. Finally, we demonstrate that the distributions of tubules can be further sculpted by increasing the number of subunit species, thereby increasing the assembly complexity, and demonstrate that using two subunit species successfully reduces the number of available end states by half. These results help to shed light on the roles of assembly complexity and geometry in self-limited assembly and could be extended to other self-limiting architectures, such as shells, toroids, or triply periodic frameworks.


Assuntos
DNA , Nanoestruturas , Coloides/química , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
5.
J Am Chem Soc ; 146(19): 12901-12906, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701349

RESUMO

Cholesterol-rich membranes play a pivotal role in cancer initiation and progression, necessitating innovative approaches to target these membranes for cancer inhibition. Here we report the first case of unnatural peptide (1) assemblies capable of depleting cholesterol and inhibiting cancer cells. Peptide 1 self-assembles into micelles and is rapidly taken up by cancer cells, especially when combined with an acute cholesterol-depleting agent (MßCD). Click chemistry has confirmed that 1 depletes cell membrane cholesterol. It localizes in membrane-rich organelles, including the endoplasmic reticulum, Golgi apparatus, and lysosomes. Furthermore, 1 potently inhibits malignant cancer cells, working synergistically with cholesterol-lowering agents. Control experiments have confirmed that C-terminal capping and unnatural amino acid residues (i.e., BiP) are essential for both cholesterol depletion and potent cancer cell inhibition. This work highlights unnatural peptide assemblies as a promising platform for targeting the cell membrane in controlling cell fates.


Assuntos
Colesterol , Peptídeos , Humanos , Colesterol/química , Colesterol/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos
6.
Langmuir ; 40(13): 6862-6868, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385757

RESUMO

We report on a synthesis protocol, experimental characterization, and theoretical modeling of active pulsatile Belousov-Zhabotinsky (BZ) hydrogels. Our two-step synthesis technique allows independent optimization of the geometry, the chemical, and the mechanical properties of BZ gels. We identify the role of the surrounding medium chemistry and gel radius for the occurrence of BZ gel oscillations, quantified by the Damköhler number, which is the ratio of chemical reaction to diffusion rates. Tuning the BZ gel size to maximize its chemomechanical oscillation amplitude, we find that its oscillatory strain amplitude is limited by the time scale of gel swelling relative to the chemical oscillation period. Our experimental findings are in good agreement with a Vanag-Epstein model of BZ chemistry and a Tanaka Fillmore theory of gel swelling dynamics.

7.
Soft Matter ; 20(8): 1869-1883, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38318759

RESUMO

Active nematics are dense systems of rodlike particles that consume energy to drive motion at the level of the individual particles. They exist in natural systems like biological tissues and artificial materials such as suspensions of self-propelled colloidal particles or synthetic microswimmers. Active nematics have attracted significant attention in recent years due to their spectacular nonequilibrium collective spatiotemporal dynamics, which may enable applications in fields such as robotics, drug delivery, and materials science. The director field, which measures the direction and degree of alignment of the local nematic orientation, is a crucial characteristic of active nematics and is essential for studying topological defects. However, determining the director field is a significant challenge in many experimental systems. Although director fields can be derived from images of active nematics using traditional imaging processing methods, the accuracy of such methods is highly sensitive to the settings of the algorithms. These settings must be tuned from image to image due to experimental noise, intrinsic noise of the imaging technology, and perturbations caused by changes in experimental conditions. This sensitivity currently limits automatic analysis of active nematics. To address this, we developed a machine learning model for extracting reliable director fields from raw experimental images, which enables accurate analysis of topological defects. Application of the algorithm to experimental data demonstrates that the approach is robust and highly generalizable to experimental settings that are different from those in the training data. It could be a promising tool for investigating active nematics and may be generalized to other active matter systems.

8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34535551

RESUMO

Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a nonintrusive pathway for engineering active microfluidic systems.

9.
Soft Matter ; 19(35): 6691-6699, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609884

RESUMO

We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.

10.
Soft Matter ; 19(29): 5630-5640, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37455602

RESUMO

Confinement can be used to systematically tame turbulent dynamics occurring in active fluids. Although periodic channels are the simplest geometries to study confinement numerically, the corresponding experimental realizations require closed racetracks. Here, we computationally study 2D active nematics confined to such a geometry-an annulus. By systematically varying the annulus inner radius and channel width, we bridge the behaviors observed in the previously studied asymptotic limits of the annulus geometry: a disk and an infinite channel. We identify new steady-state behaviors, which reveal the influence of boundary curvature and its interplay with confinement. We also show that, below a threshold inner radius, the dynamics are insensitive to the presence of the inner hole. We explain this insensitivity through a simple scaling analysis. Our work sheds further light on design principles for using confinement to control the dynamics of active nematics.

11.
Nat Mater ; 20(9): 1281-1289, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127822

RESUMO

Broad-spectrum antiviral platforms that can decrease or inhibit viral infection would alleviate many threats to global public health. Nonetheless, effective technologies of this kind are still not available. Here, we describe a programmable icosahedral canvas for the self-assembly of icosahedral shells that have viral trapping and antiviral properties. Programmable triangular building blocks constructed from DNA assemble with high yield into various shell objects with user-defined geometries and apertures. We have created shells with molecular masses ranging from 43 to 925 MDa (8 to 180 subunits) and with internal cavity diameters of up to 280 nm. The shell interior can be functionalized with virus-specific moieties in a modular fashion. We demonstrate this virus-trapping concept by engulfing hepatitis B virus core particles and adeno-associated viruses. We demonstrate the inhibition of hepatitis B virus core interactions with surfaces in vitro and the neutralization of infectious adeno-associated viruses exposed to human cells.


Assuntos
DNA , Vírus da Hepatite B , Nanopartículas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 116(11): 4788-4797, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804207

RESUMO

We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of [Formula: see text] defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.

13.
Phys Rev Lett ; 127(14): 148001, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652175

RESUMO

In microtubule-based active nematics, motor-driven extensile motion of microtubule bundles powers chaotic large-scale dynamics. We quantify the interfilament sliding motion both in isolated bundles and in a dense active nematic. The extension speed of an isolated microtubule pair is comparable to the molecular motor stepping speed. In contrast, the net extension in dense 2D active nematics is significantly slower; the interfilament sliding speeds are widely distributed about the average and the filaments exhibit both contractile and extensile relative motion. These measurements highlight the challenge of connecting the extension rate of isolated bundles to the multimotor and multifilament interactions present in a dense 2D active nematic. They also provide quantitative data that is essential for building multiscale models.

14.
Langmuir ; 37(20): 6219-6231, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33983740

RESUMO

Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report an experimental study of long, slender nanorods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle concentration, adhesion strength, and membrane tension in determining the membrane morphology. We combined giant unilamellar vesicles with oppositely charged nanorods, carefully tuning the adhesion strength, membrane tension, and particle concentration. With increasing adhesion strength, the primary behaviors observed were membrane deformation, vesicle-vesicle adhesion, and vesicle rupture. These behaviors were observed in well-defined regions in the parameter space with sharp transitions between them. We observed the deformation of the membrane resulting in tubulation, textured surfaces, and small and large lipid-particle aggregates. These responses are robust and repeatable and provide a new physical understanding of the dependence on the shape, binding affinity, and particle concentration in membrane remodeling. The design principles derived from these experiments may lead to new bioinspired membrane-based materials.


Assuntos
Bicamadas Lipídicas , Nanotubos , Membrana Celular , DNA , Lipossomas Unilamelares
15.
Soft Matter ; 17(3): 738-747, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33220675

RESUMO

Active nematics are a class of far-from-equilibrium materials characterized by local orientational order of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the steady-state properties, but do not capture certain detailed dynamics of experimental active nematics. We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory (ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demonstrate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile microtubule bundles, as well as on data from numerical simulations of active nematics.

16.
Eur Phys J E Soft Matter ; 44(2): 14, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683461

RESUMO

Constant pressure pumps are an invaluable yet underutilized resource for microfluidic flow systems. In particular, constant pressure pumps are able to stabilize the fluid pressure in systems where the viscosity may change due to chemical reactions or the flow rate may vary due to deformations of the channels. The constant pressure pump presented here is designed on the premise of creating and maintaining a pressure differential between the laboratory and a pressure reservoir. This pressure reservoir is then used to drive the input fluid at the specified gauge pressure. The pump design presented here is perfect for primarily undergraduate institutions and other laboratories with modest research budgets as it can be built for under US$100 and construction is within the scope of an advanced undergraduate. The pump consists of an Arduino-compatible microcontroller, Adafruit electronic components, low-voltage air pump, Nalgene water bottle, and various fluid components. A complete parts list is included in the appendix. Comparable commercial pumps have a retail price in excess of US$5000. Multiple pump designs were constructed and tested with the ability to hold a constant pressure of up to 14 psig (97 kPa-gauge) with a maximum flow rate of 65 [Formula: see text]L/s for water.

17.
Phys Rev Lett ; 125(17): 178005, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156653

RESUMO

In this work we present the first systematic framework to sculpt active nematic systems, using optimal control theory and a hydrodynamic model of active nematics. We demonstrate the use of two different control fields, (i) applied vorticity and (ii) activity strength, to shape the dynamics of an extensile active nematic that is confined to a disk. In the absence of control inputs, the system exhibits two attractors, clockwise and counterclockwise circulating states characterized by two co-rotating topological +1/2 defects. We specifically seek spatiotemporal inputs that switch the system from one attractor to the other; we also examine phase-shifting perturbations. We identify control inputs by optimizing a penalty functional with three contributions: total control effort, spatial gradients in the control, and deviations from the desired trajectory. This work demonstrates that optimal control theory can be used to calculate nontrivial inputs capable of restructuring active nematics in a manner that is economical, smooth, and rapid, and therefore will serve as a guide to experimental efforts to control active matter.

18.
Chemistry ; 26(66): 15116-15120, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32579262

RESUMO

Although lipids contribute to cancer drug resistance, it is challenging to target diverse range of lipids. Here, we show enzymatically inserting exceedingly simple synthetic lipids into membranes for increasing membrane tension and selectively inhibiting drug resistant cancer cells. The lipid, formed by conjugating dodecylamine to d-phosphotyrosine, self-assembles to form micelles. Enzymatic dephosphorylation of the micelles inserts the lipids into membranes and increases membrane tension. The micelles effectively inhibit a drug resistant glioblastoma cell (T98G) or a triple-negative breast cancer cell (HCC1937), without inducing acquired drug resistance. Moreover, the enzymatic reaction of the micelles promotes the accumulation of the lipids in the membranes of subcellular organelles (e.g., endoplasmic reticulum (ER), Golgi, and mitochondria), thus activating multiple regulated cell death pathways. This work, in which for the first time membrane tension is increased to inhibit cancer cells, illustrates a new and powerful supramolecular approach for antagonizing difficult drug targets.


Assuntos
Retículo Endoplasmático/química , Lipídeos/química , Neoplasias , Preparações Farmacêuticas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos
19.
Hum Reprod ; 34(12): 2349-2361, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812992

RESUMO

STUDY QUESTION: Is the combined use of fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging and second harmonic generation (SHG) spindle imaging a feasible and safe approach for noninvasive embryo assessment? SUMMARY ANSWER: Metabolic imaging can sensitively detect meaningful metabolic changes in embryos, SHG produces high-quality images of spindles and the methods do not significantly impair embryo viability. WHAT IS KNOWN ALREADY: Proper metabolism is essential for embryo viability. Metabolic imaging is a well-tested method for measuring metabolism of cells and tissues, but it is unclear if it is sensitive enough and safe enough for use in embryo assessment. STUDY DESIGN, SIZE, DURATION: This study consisted of time-course experiments and control versus treatment experiments. We monitored the metabolism of 25 mouse oocytes with a noninvasive metabolic imaging system while exposing them to oxamate (cytoplasmic lactate dehydrogenase inhibitor) and rotenone (mitochondrial oxidative phosphorylation inhibitor) in series. Mouse embryos (n = 39) were measured every 2 h from the one-cell stage to blastocyst in order to characterize metabolic changes occurring during pre-implantation development. To assess the safety of FLIM illumination, n = 144 illuminated embryos were implanted into n = 12 mice, and n = 108 nonilluminated embryos were implanted into n = 9 mice. PARTICIPANTS/MATERIALS, SETTING, METHODS: Experiments were performed in mouse embryos and oocytes. Samples were monitored with noninvasive, FLIM-based metabolic imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence. Between NADH cytoplasm, NADH mitochondria and FAD mitochondria, a single metabolic measurement produces up to 12 quantitative parameters for characterizing the metabolic state of an embryo. For safety experiments, live birth rates and pup weights (mean ± SEM) were used as endpoints. For all test conditions, the level of significance was set at P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE: Measured FLIM parameters were highly sensitive to metabolic changes due to both metabolic perturbations and embryo development. For oocytes, metabolic parameter values were compared before and after exposure to oxamate and rotenone. The metabolic measurements provided a basis for complete separation of the data sets. For embryos, metabolic parameter values were compared between the first division and morula stages, morula and blastocyst and first division and blastocyst. The metabolic measurements again completely separated the data sets. Exposure of embryos to excessive illumination dosages (24 measurements) had no significant effect on live birth rate (5.1 ± 0.94 pups/mouse for illuminated group; 5.7 ± 1.74 pups/mouse for control group) or pup weights (1.88 ± 0.10 g for illuminated group; 1.89 ± 0.11 g for control group). LIMITATIONS, REASONS FOR CAUTION: The study was performed using a mouse model, so conclusions concerning sensitivity and safety may not generalize to human embryos. A limitation of the live birth data is also that although cages were routinely monitored, we could not preclude that some runt pups may have been eaten. WIDER IMPLICATIONS OF THE FINDINGS: Promising proof-of-concept results demonstrate that FLIM with SHG provide detailed biological information that may be valuable for the assessment of embryo and oocyte quality. Live birth experiments support the method's safety, arguing for further studies of the clinical utility of these techniques. STUDY FUNDING/COMPETING INTEREST(S): Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University and by the Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award UL1 TR001102), by NSF grants DMR-0820484 and PFI-TT-1827309 and by NIH grant R01HD092550-01. T.S. was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology grant (1308878). S.F. and S.A. were supported by NSF MRSEC DMR-1420382. Becker and Hickl GmbH sponsored the research with the loaning of equipment for FLIM. T.S. and D.N. are cofounders and shareholders of LuminOva, Inc., and co-hold patents (US20150346100A1 and US20170039415A1) for metabolic imaging methods. D.S. is on the scientific advisory board for Cooper Surgical and has stock options with LuminOva, Inc.


Assuntos
Peso ao Nascer , Embrião de Mamíferos/diagnóstico por imagem , Diagnóstico Pré-Implantação/métodos , Microscopia de Geração do Segundo Harmônico , Fuso Acromático , Animais , Coeficiente de Natalidade , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Oócitos , Gravidez
20.
Phys Rev Lett ; 123(14): 148301, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702219

RESUMO

We experimentally and theoretically investigate the dynamics of inhibitory coupled self-driven oscillators on a star network in which a single central hub node is connected to k peripheral arm nodes. The system consists of water-in-oil Belousov-Zhabotinsky ∼100 µm emulsion drops contained in storage wells etched in silicon wafers. We observed three dynamical attractors by varying the number of arms in the star graph and the coupling strength: (i) unlocked, uncorrelated phase shifts between all oscillators; (ii) locked, arm hubs synchronized in phase with a k-dependent phase shift between the arm and central hub; and (iii) center silent, a central hub stopped oscillating and the arm hubs oscillated without synchrony. We compare experiment to theory. For case (ii), we identified a logarithmic dependence of the phase shift on star degree, and were able to discriminate between contributions to the phase shift arising from star topology and oscillator chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA