Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39075825

RESUMO

In this contribution, nanocatalysts with rather diverse architectures were designed to promote different intimacy degrees between Cu and SiO2 and consequently tune distinct Cu-SiO2 interactions. Previously synthesized copper nanoparticles were deposited onto SiO2 (NPCu/SiO2) in contrast to ordinarily prepared supported Cu/SiO2. NPCu@SiO2 and SiO2@Cu core-shell nanocatalysts were also synthesized, and they were all bulk and surface characterized by XRD, TGA, TEM/HRTEM, H2-TPR, XANES, and XPS. It was found that Cu0 is the main copper phase in NPCu/SiO2 while Cu2+ rules the ordinary Cu/SiO2 catalyst, and Cu0 and electron-deficient Cuδ+ species coexist in the core-shell nanocatalysts as a consequence of a deeper metal-support interaction. Catalytic performance could not be associated with the physical properties of the nanocatalysts derived from their architectures but was associated with the more refined chemical characteristics tuned by their design. Cu/SiO2 and NPCu/SiO2 catalysts led to the formation of furfuryl alcohol, evidencing that catalysts holding weak or no metal-support interaction have no significant impact on product distribution even in the aqueous phase. The establishment of such interactions through advanced catalyst architecture, allowing the formation of electron-deficient Cuδ+ moieties, particularly Cu2+ and Cu+ as unveiled by spectroscopic investigations, is critical to promoting the hydrogenation-ring rearrangement cascade mechanism leading to cycloketones.

2.
Langmuir ; 26(5): 3382-7, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19824684

RESUMO

Different nanocrystalline magnesias were synthesized by precipitation and hydrothermal treatments of aqueous salt solutions in an attempt to tune their surface basicity. CO(2) was chosen as an acidic molecule to probe the basic sites by both temperature-programmed desorption and infrared spectroscopy. All samples were shown to be crystalline, and except that obtained by nitrate decomposition, they all possessed high surface areas. The oxides presented different basic site distributions, evidencing the significant role of the preparation conditions on tuning the surface basicity: while medium-strength basic centers are dominant in the samples prepared by precipitation aging or hydrothermal treatment, the one obtained by precipitation features a roughly equal concentration of medium-strength and strong centers. Infrared spectra revealed that hydrogen carbonate and monodentate and bidentate carbonates were formed in distinct proportion on all oxides. However, the bidentate complexes were shown to have different thermal stabilities; the more stable species are thought to be formed on acid-base pair centers associated with an anionic vacancy. Distinct morphological and structural characteristics were also observed by high-resolution transmission electron microscopy. It was consistently found that the high-surface area samples are formed by aggregates of nanoparticles (2-5 nm) randomly oriented and with a high concentration of structural defects. These findings allowed us to conclude that the surface heterogeneity promoted during synthesis increases the concentration of basic sites and plays an important role in tuning the basicity of the solids.

3.
Nanoscale Res Lett ; 5(6): 1002-9, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20672065

RESUMO

The present contribution reports on the features of platinum-based systems supported on vanadium oxide nanotubes. The synthesis of nanotubes was carried out using a commercial vanadium pentoxide via hydrothermal route. The nanostructured hybrid materials were prepared by wet impregnation using two different platinum precursors. The formation of platinum nanoparticles was evaluated by applying distinct reduction procedures. All nanostructured samples were essentially analysed by X-ray diffraction and transmission electron microscopy. After reduction, transmission electron microscopy also made it possible to estimate particle size distribution and mean diameter calculations. It could be seen that all reduction procedures did not affect the nanostructure of the supports and that the formation of metallic nanoparticles is quite efficient with an indistinct distribution along the nanotubes. Nevertheless, the reduction procedure determined the diameter, dispersion and shape of the metallic particles. It could be concluded that the use of H2PtCl6 is more suitable and that the use of hydrogen as reducing agent leads to a nanomaterial with unagglomerated round-shaped metallic particles with mean size of 6-7 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA