Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pflugers Arch ; 475(2): 181-202, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260174

RESUMO

We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 µM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.


Assuntos
Células Cromafins , Canais de Potássio Ativados por Cálcio de Condutância Alta , Ratos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Microeletrodos , Células Cromafins/metabolismo , Potenciais de Ação/fisiologia , Canais Iônicos/metabolismo
2.
J Physiol ; 600(24): 5295-5309, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36284365

RESUMO

The oligomeric form of the peptide amyloid beta 42 (Abeta42) contributes to the development of synaptic abnormalities and cognitive impairments associated with Alzheimer's disease (AD). To date, there is a gap in knowledge regarding how Abeta42 alters the elementary parameters of GABAergic synaptic function. Here we found that Abeta42 increased the frequency and amplitude of miniature GABAergic currents as well as the amplitude of evoked inhibitory postsynaptic currents. When we focused on paired pulse depression (PPD) to establish whether GABA release probability was affected by Abeta42, we did not observe any significant change. On the other hand, a more detailed investigation of the presynaptic effects induced by Abeta42 by means of multiple probability fluctuation analysis and cumulative amplitude analysis showed an increase in both the size of the readily releasable pool responsible for synchronous release and the number of release sites. We further explored whether ryanodine receptors (RyRs) contributed to exacerbating these changes by stabilizing the interaction between RyRs and the accessory protein calstabin. We observed that the RyR-calstabin interaction stabilizer S107 restored the synaptic parameters to values comparable to those measured in control conditions. In conclusion, our results clarify the mechanisms of potentiation of GABAergic synapses induced by Abeta42. We further suggest that RyRs are involved in the control of synaptic activity during the early stage of AD onset and that their stabilization could represent a new therapeutical approach for AD treatment. KEY POINTS: Accumulation of the peptide amyloid beta 42 (Abeta42) is a key characteristic of Alzheimer's disease (AD) and causes synaptic dysfunctions. To date, the effects of Abeta42 accumulation on GABAergic synapses are poorly understood. The findings reported here suggest that, similarly to what is observed on glutamatergic synapses, Abeta42 modifies GABAergic synapses by targeting ryanodine receptors and causing calcium dysregulation. The GABAergic impairments can be restored by the ryanodine receptor-calstabin interaction stabilizer S107. Based on this research, RyRs stabilization may represent a novel pharmaceutical strategy for preventing or delaying AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Rianodina/farmacologia , Doença de Alzheimer/metabolismo , Hipocampo/fisiologia , Neurônios/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
3.
Cereb Cortex ; 28(2): 433-446, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999123

RESUMO

We studied the effect of Amyloid ß 1-42 oligomers (Abeta42) on Ca2+ dependent excitability profile of hippocampal neurons. Abeta42 is one of the Amyloid beta peptides produced by the proteolytic processing of the amyloid precursor protein and participates in the initiating event triggering the progressive dismantling of synapses and neuronal circuits. Our experiments on cultured hippocampal network reveal that Abeta42 increases intracellular Ca2+ concentration by 46% and inhibits firing discharge by 19%. More precisely, Abeta42 differently regulates ryanodine (RyRs), NMDA receptors (NMDARs), and voltage gated calcium channels (VGCCs) by increasing Ca2+ release through RyRs and inhibiting Ca2+ influx through NMDARs and VGCCs. The overall increased intracellular Ca2+ concentration causes stimulation of K+ current carried by big conductance Ca2+ activated potassium (BK) channels and hippocampal network firing inhibition. We conclude that Abeta42 alters neuronal function by means of at least 4 main targets: RyRs, NMDARs, VGCCs, and BK channels. The development of selective modulators of these channels may in turn be useful for developing effective therapies that could enhance the quality of life of AD patients during the early onset of the pathology.


Assuntos
Potenciais de Ação/fisiologia , Peptídeos beta-Amiloides/farmacologia , Hipocampo/fisiologia , Neurônios/fisiologia , Fragmentos de Peptídeos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Hipocampo/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Fatores de Tempo
5.
J Physiol ; 592(15): 3215-30, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879870

RESUMO

Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 µm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 µm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution.


Assuntos
Células Cromafins/metabolismo , Exocitose , Técnicas de Patch-Clamp/métodos , Análise Serial de Tecidos/métodos , Animais , Bovinos , Células Cultivadas , Células Cromafins/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Técnicas de Patch-Clamp/instrumentação , Análise Serial de Tecidos/instrumentação
6.
Methods Mol Biol ; 2565: 213-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205897

RESUMO

Diamond-based multiarray sensors are suitable to detect in real-time exocytosis and action potentials from cultured, spontaneously firing chromaffin cells, primary hippocampal neurons, and midbrain dopaminergic neurons. Here, we focus on how amperometric measurements of catecholamine release are performed on micrographitic diamond multiarrays (µG-D-MEAs) with high temporal and spatial resolution by 16 electrodes simultaneously.


Assuntos
Células Cromafins , Diamante , Catecolaminas , Células Cultivadas , Cisteamina , Exocitose/fisiologia
7.
Front Cell Neurosci ; 17: 1078550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744002

RESUMO

The aim of this work was to monitor the effects of extracellular α-synuclein on the firing activity of midbrain neurons dissociated from substantia nigra TH-GFP mice embryos and cultured on microelectrode arrays (MEA). We monitored the spontaneous firing discharge of the network for 21 days after plating and the role of glutamatergic and GABAergic inputs in regulating burst generation and network synchronism. Addition of GABA A , AMPA and NMDA antagonists did not suppress the spontaneous activity but allowed to identify three types of neurons that exhibited different modalities of firing and response to applied L-DOPA: high-rate (HR) neurons, low-rate pacemaking (LR-p), and low-rate non-pacemaking (LR-np) neurons. Most HR neurons were insensitive to L-DOPA, while the majority of LR-p neurons responded with a decrease of the firing discharge; less defined was the response of LR-np neurons. The effect of exogenous α-synuclein (α-syn) on the firing discharge of midbrain neurons was then studied by varying the exposure time (0-48 h) and the α-syn concentration (0.3-70 µM), while the formation of α-syn oligomers was monitored by means of AFM. Independently of the applied concentration, acute exposure to α-syn monomers did not exert any effect on the spontaneous firing rate of HR, LR-p, and LR-np neurons. On the contrary, after 48 h exposure, the firing activity was drastically altered at late developmental stages (14 days in vitro, DIV, neurons): α-syn oligomers progressively reduced the spontaneous firing discharge (IC50 = 1.03 µM), impaired burst generation and network synchronism, proportionally to the increased oligomer/monomer ratio. Different effects were found on early-stage developed neurons (9 DIV), whose firing discharge remained unaltered, regardless of the applied α-syn concentration and the exposure time. Our findings unravel, for the first time, the variable effects of exogenous α-syn at different stages of midbrain network development and provide new evidence for the early detection of neuronal function impairment associated to aggregated forms of α-syn.

9.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131793

RESUMO

MicroGraphited-Diamond-Multi Electrode Arrays (µG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As µG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (µG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.


Assuntos
Células Cromafins , Hominidae , Ratos , Animais , Diamante , Células Cromafins/fisiologia , Microeletrodos , Exocitose/fisiologia
10.
Biophys Chem ; 253: 106241, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398633

RESUMO

Micro graphitic - diamond - multi electrode arrays (µG-D-MEAs) are suitable for measuring multisite quantal dopamine (DA) release from PC12 cells. Following cell stimulation with high extracellular KCl and electrode polarization at +650 mV, amperometric spikes are detected with a mean frequency of 0.60 ±â€¯0.16 Hz. In each recording, simultaneous detection of secretory events is occurred in approximately 50% of the electrodes. Kinetic spike parameters and background noise are preserved among the different electrodes. Comparing the amperometric spikes recorder under control conditions with those recorders from PC12 cells previously incubated for 30 min with the dopamine precursor Levodopa (L-DOPA, 20 µM) it appears that the quantal size of amperometric spikes is increased by 250% and the half-time width (t1/2) by over 120%. On the contrary, L-DOPA has no effect on the frequency of secretory events. Overall, these data demonstrate that the µG-D-MEAs represent a reliable bio-sensor to simultaneously monitor quantal exocytotic events from different cells and in perspective can be exploited as a drug-screening tool.


Assuntos
Técnicas Biossensoriais , Diamante/química , Dopamina/metabolismo , Grafite/química , Animais , Células Cultivadas , Diamante/metabolismo , Dopamina/química , Eletrodos , Grafite/metabolismo , Células PC12 , Tamanho da Partícula , Ratos , Propriedades de Superfície
11.
J Alzheimers Dis ; 71(3): 907-920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31450501

RESUMO

Neuroinflammation is involved in the pathogenesis of Alzheimer's disease, and the transcription factor NF-κB is a player in this event. We found here that the ischemic damage alone or in association with Aß1-42 activates the NF-κB pathway, induces an increase of BACE1 and a parallel inhibition of Uch-L1 and TREM2, both in vitro and in vivo, in Tg 5XFAD and in human brains of sporadic AD. This mechanism creates a synergistic loop that fosters inflammation. We also demonstrated a significant protection exerted by the restoration of Uch-L1 activity. The rescue of the enzyme is able to abolish the decrease of TREM2 and the parameters of neuroinflammation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores Imunológicos/metabolismo , Acidente Vascular Cerebral/metabolismo , Ubiquitina Tiolesterase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/genética , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Células Cultivadas , Citocinas/biossíntese , Regulação para Baixo , Feminino , Humanos , Inflamação/etiologia , Masculino , Camundongos , NF-kappa B/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética
12.
Phytomedicine ; 36: 168-175, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157811

RESUMO

BACKGROUND: Salix caprea L. is an ornamental plant with prominent antioxidant activity. In the last decades Salix caprea bud extracts (SCBEs) have been used for the treatment of oxidative stress related disorders. PURPOSE: A large part of cellular functions depends on the amount of intracellular Ca2+ concentration which in turn is mainly determined by Ca2+ ions movements across plasma membrane as well as by Ca2+ released from the stores. For better evaluating the mechanism of action of SCBEs, we focused on the effect of SCBEs on voltage gated Ca2+ channels (VGCCs) functioning and related catecholamines secretion in mouse chromaffin cells (MCCs). These latter are neuroendocrine cells that share a wide variety of functions with neurons. They are particularly interesting for studying the relationship between VGCCs activation and catecholamines secretion both in control and under stressful conditions. STUDY DESIGN AND METHODS: We focused on the effect of SCBEs on VGCCs being these latter considered one of the main pathway of Ca2+ influx across plasma membrane. Ca2+ currents and capacitance changes were measured in patch clamp experiments performed in voltage clamp configuration. RESULTS: We show that SCBEs inhibited VGCCs in a dose dependent manner. On average, the saturating concentration of SCBEs (SCBEsmax) is able to block 36% of the maximum Ca2+ current amplitude (ICa) without selectivity for L (ICa, L) or non-L type (ICa, non-L) Ca2+ channels. Furthermore, ICa inhibition is not followed by alteration of VGCCs gating kinetics, but is responsible for a marked decrease of Ca2+ dependent catecholamines secretion. CONCLUSION: We conclude that the ability of SCBEs to inhibit VGCCs function, known to be potentiated during oxidative stress, could contribute to the already known antioxidant properties of Salix caprea L. We finally suggest that the inhibitory effect of SCBEs on catecholamines secretion may contribute to treat stress dependent cellular dysfunctions.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Extratos Vegetais/farmacologia , Salix/química , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Cromafins/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais
13.
Sci Rep ; 6: 20682, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857940

RESUMO

We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.


Assuntos
Células Cromafins/metabolismo , Diamante , Neurotransmissores/análise , Animais , Bovinos , Células Cromafins/citologia , Eletrodos , Neurotransmissores/metabolismo , Oxirredução
14.
J Ethnopharmacol ; 172: 288-96, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26144285

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tilia tomentosa Moench bud extracts (TTBEs) is used in traditional medicine for centuries as sedative compound. Different plants belonging to the Tilia genus have shown their efficacy in the treatment of anxiety but still little is known about the mechanism of action of their bud extracts. AIM OF THE STUDY: To evaluate the action of TTBEs as anxiolytic and sedative compound on in vitro hippocampal neurons. MATERIAL AND METHODS: The anxiolytic effect of TTBEs was assayed by testing the effects of these compounds on GABAA receptor-activated chloride current of hippocampal neurons by means of the patch-clamp technique and microelectrode-arrays (MEAs). RESULTS: TTBEs acutely administered on mouse hippocampal neurons, activated a chloride current comparable to that measured in the presence of GABA (100 µM). Bicuculline (100 µM) and picrotoxin (100 µM) blocked about 90% of this current, while the remaining 10% was blocked by adding the benzodiazepine (BDZ) antagonist flumazenil (30 µM). Flumazenil alone blocked nearly 60% of the TTBEs activated current, suggesting that TTBEs binds to both GABAA and BDZ receptor sites. Application of high-doses of TTBEs on spontaneous active hippocampal neurons grown for 3 weeks on MEAs blocked the synchronous activity of these neurons. The effects were mimicked by GABA and prevented by picrotoxin (100µM) and flumazenil (30 µM). At minimal doses, TTBEs reduced the frequency of synchronized bursts and increased the cross-correlation index of synchronized neuronal firing. CONCLUSIONS: Our data suggest that TTBEs mimics GABA and BDZ agonists by targeting hippocampal GABAergic synapses and inhibiting network excitability by increasing the strength of inhibitory synaptic outputs. Our results contribute toward the validation of TTBEs as effective sedative and anxiolytic compound.


Assuntos
Ansiolíticos/farmacologia , Hipnóticos e Sedativos/farmacologia , Extratos Vegetais/farmacologia , Tilia/química , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/isolamento & purificação , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Flumazenil/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Extratos Vegetais/administração & dosagem , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologia
15.
PLoS One ; 7(7): e41530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848520

RESUMO

Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O(2)). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca(2+)-activated K(+) channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 µM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons.


Assuntos
Hipocampo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Leptina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Hipocampo/citologia , Indóis/farmacologia , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia
16.
Biomaterials ; 32(34): 9040-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21872323

RESUMO

Semiconductor nanocrystal quantum dots (QDs) possess an enormous potential of applications in nanomedicine, drug delivery and bioimaging which derives from their unique photoemission and photostability characteristics. In spite of this, however, their interactions with biological systems and impact on human health are still largely unknown. Here we used neurosecretory mouse chromaffin cells of the adrenal gland for testing the effects of CdSe-ZnS core-shell quantum dots (5-36 nM) on Ca(2+) channels functionality and Ca(2+)-dependent neurosecretion. Prolonged exposure (24 h) to commonly used concentrations of CdSe-ZnS QDs (≥16 nM) showed that the semiconductor nanocrystal is effectively internalized into the cells without affecting cell integrity (no changes of membrane resistance and cell capacitance). QDs reduced the size of Ca(2+) currents by ∼28% in a voltage-independent manner without affecting channel gating. Correspondingly, depolarization-evoked exocytosis, measured at +10 mV, where Ca(2+) currents are maximal, was reduced by 29%. CdSe-ZnS QDs reduced the size of the readily releasable pool (RRP) of secretory vesicles by 32%, the frequency of release by 33% and the overall quantity of released catecholamines by 61%, as measured by carbon fibers amperometry. In addition, the Ca(2+)-dependence of exocytosis was reduced, whereas the catecholamine content of single granules, as well as the kinetics of release, remained unaltered. These data suggest that exposure to CdSe-ZnS QDs impairs Ca(2+) influx and severely interferes with the functionality of the exocytotic machinery, compromising the overall catecholamine supply from chromaffin cells.


Assuntos
Compostos de Cádmio/metabolismo , Cálcio/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Pontos Quânticos , Compostos de Selênio/metabolismo , Sulfetos/metabolismo , Compostos de Zinco/metabolismo , Animais , Canais de Cálcio/metabolismo , Sobrevivência Celular , Células Cultivadas , Células Cromafins/citologia , Exocitose , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA