Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 230(3): 598-605, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38373258

RESUMO

A statewide genomic surveillance system for invasive Group A Streptococcus was implemented in Arizona in June 2019, resulting in 1046 isolates being submitted for genomic analysis to characterize emm types and identify transmission clusters. Eleven of the 32 identified distinct emm types comprised >80% of samples, with 29.7% of all isolates being typed as emm49 (and its genetic derivative emm151). Phylogenetic analysis initially identified an emm49 genomic cluster of 4 isolates that rapidly expanded over subsequent months (June 2019 to February 2020). Public health investigations identified epidemiologic links with 3 different long-term care facilities, resulting in specific interventions. Unbiased genomic surveillance allowed for identification and response to clusters that would have otherwise remained undetected.


Assuntos
Filogenia , Infecções Estreptocócicas , Streptococcus pyogenes , Arizona/epidemiologia , Humanos , Streptococcus pyogenes/genética , Streptococcus pyogenes/classificação , Streptococcus pyogenes/isolamento & purificação , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Feminino , Adulto , Masculino , Pré-Escolar , Criança , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Adolescente , Instalações de Saúde , Lactente , Idoso de 80 Anos ou mais , Proteínas da Membrana Bacteriana Externa/genética , Genômica , Monitoramento Epidemiológico , Recém-Nascido , Genoma Bacteriano , Antígenos de Bactérias/genética
2.
MMWR Morb Mortal Wkly Rep ; 71(28): 904-907, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35834423

RESUMO

As part of public health preparedness for infectious disease threats, CDC collaborates with other U.S. public health officials to ensure that the Laboratory Response Network (LRN) has diagnostic tools to detect Orthopoxviruses, the genus that includes Variola virus, the causative agent of smallpox. LRN is a network of state and local public health, federal, U.S. Department of Defense (DOD), veterinary, food, and environmental testing laboratories. CDC developed, and the Food and Drug Administration (FDA) granted 510(k) clearance* for the Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set (non-variola Orthopoxvirus [NVO] assay), a polymerase chain reaction (PCR) diagnostic test to detect NVO. On May 17, 2022, CDC was contacted by the Massachusetts Department of Public Health (DPH) regarding a suspected case of monkeypox, a disease caused by the Orthopoxvirus Monkeypox virus. Specimens were collected and tested by the Massachusetts DPH public health laboratory with LRN testing capability using the NVO assay. Nationwide, 68 LRN laboratories had capacity to test approximately 8,000 NVO tests per week during June. During May 17-June 30, LRN laboratories tested 2,009 specimens from suspected monkeypox cases. Among those, 730 (36.3%) specimens from 395 patients were positive for NVO. NVO-positive specimens from 159 persons were confirmed by CDC to be monkeypox; final characterization is pending for 236. Prompt identification of persons with infection allowed rapid response to the outbreak, including isolation and treatment of patients, administration of vaccines, and other public health action. To further facilitate access to testing and increase convenience for providers and patients by using existing provider-laboratory relationships, CDC and LRN are supporting five large commercial laboratories with a national footprint (Aegis Science, LabCorp, Mayo Clinic Laboratories, Quest Diagnostics, and Sonic Healthcare) to establish NVO testing capacity of 10,000 specimens per week per laboratory. On July 6, 2022, the first commercial laboratory began accepting specimens for NVO testing based on clinician orders.


Assuntos
Técnicas e Procedimentos Diagnósticos , Surtos de Doenças , Mpox , Surtos de Doenças/prevenção & controle , Humanos , Laboratórios , Mpox/diagnóstico , Mpox/epidemiologia , Orthopoxvirus , Estados Unidos/epidemiologia , Vírus da Varíola
3.
JAC Antimicrob Resist ; 3(3): dlab137, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34514407

RESUMO

BACKGROUND: Historically, United States' carbapenem-resistant Enterobacterales (CRE) surveillance and mechanism testing focused on three genera: Escherichia, Klebsiella, and Enterobacter (EsKE); however, other genera can harbour mobile carbapenemases associated with CRE spread. OBJECTIVES: From January through May 2018, we conducted a 10 state evaluation to assess the contribution of less common genera (LCG) to carbapenemase-producing (CP) CRE. METHODS: State public health laboratories (SPHLs) requested participating clinical laboratories submit all Enterobacterales from all specimen sources during the surveillance period that were resistant to any carbapenem (Morganellaceae required resistance to doripenem, ertapenem, or meropenem) or were CP based on phenotypic or genotypic testing at the clinical laboratory. SPHLs performed species identification, phenotypic carbapenemase production testing, and molecular testing for carbapenemases to identify CP-CRE. Isolates were categorized as CP if they demonstrated phenotypic carbapenemase production and ≥1 carbapenemase gene (bla KPC, bla NDM, bla VIM, bla IMP, or bla OXA-48-like) was detected. RESULTS: SPHLs tested 868 CRE isolates, 127 (14.6%) were from eight LCG. Overall, 195 (26.3%) EsKE isolates were CP-CRE, compared with 24 (18.9%) LCG isolates. LCG accounted for 24 (11.0%) of 219 CP-CRE identified. Citrobacter spp. was the most common CP-LCG; the proportion of Citrobacter that were CP (11/42, 26.2%) was similar to the proportion of EsKE that were CP (195/741, 26.3%). Five of 24 (20.8%) CP-LCG had a carbapenemase gene other than bla KPC. CONCLUSIONS: Participating sites would have missed approximately 1 in 10 CP-CRE if isolate submission had been limited to EsKE genera. Expanding mechanism testing to additional genera could improve detection and prevention efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA