Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(5): 1264-1276.e15, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057116

RESUMO

During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.


Assuntos
Potenciais da Membrana , Neocórtex/embriologia , Neurônios/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Progressão da Doença , Eletroporação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Nature ; 538(7623): 96-98, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27669022

RESUMO

Modality-specific sensory inputs from individual sense organs are processed in parallel in distinct areas of the neocortex. For each sensory modality, input follows a cortico-thalamo-cortical loop in which a 'first-order' exteroceptive thalamic nucleus sends peripheral input to the primary sensory cortex, which projects back to a 'higher order' thalamic nucleus that targets a secondary sensory cortex. This conserved circuit motif raises the possibility that shared genetic programs exist across sensory modalities. Here we report that, despite their association with distinct sensory modalities, first-order nuclei in mice are genetically homologous across somatosensory, visual, and auditory pathways, as are higher order nuclei. We further reveal peripheral input-dependent control over the transcriptional identity and connectivity of first-order nuclei by showing that input ablation leads to induction of higher-order-type transcriptional programs and rewiring of higher-order-directed descending cortical input to deprived first-order nuclei. These findings uncover an input-dependent genetic logic for the design and plasticity of sensory pathways, in which conserved developmental programs lead to conserved circuit motifs across sensory modalities.


Assuntos
Vias Aferentes/fisiologia , Modelos Genéticos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Vias Aferentes/citologia , Animais , Vias Auditivas/citologia , Vias Auditivas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Transcrição Gênica , Vias Visuais/citologia , Vias Visuais/fisiologia
3.
Eur J Neurosci ; 39(9): 1455-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24580836

RESUMO

Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.


Assuntos
Nociceptividade/fisiologia , Núcleo Espinal do Trigêmeo/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Espinal do Trigêmeo/fisiologia , Vibrissas/inervação
4.
Eur J Neurosci ; 35(10): 1533-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22606999

RESUMO

The topographical mapping of input is a fundamental organizing principle of sensory pathways. In the somatosensory system, a precise topographical representation of the face is first generated in the brainstem and then faithfully replicated in the thalamus and cortex. Although our knowledge of the distinct polysynaptic pathways that link cutaneous mechanoreceptors of the face with neocortical neurons has recently expanded, the molecular mechanisms controlling their neuron-type-specific assembly during development remain poorly understood. The increasing availability of genetic tools that enable manipulation of these developing circuits with cellular resolution now opens new perspectives in our understanding of the molecular mechanisms through which input from the periphery is converted into patterned central pathways.


Assuntos
Vias Aferentes/fisiologia , Mapeamento Encefálico , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Humanos , Modelos Neurológicos , Neurônios/classificação , Córtex Somatossensorial/citologia , Tálamo/citologia , Vibrissas/inervação
5.
Nat Commun ; 8(1): 2015, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222517

RESUMO

Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-D-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways.


Assuntos
Dendritos/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/citologia , Transmissão Sináptica/fisiologia , Tálamo/citologia , Vibrissas/inervação , Vibrissas/fisiologia
6.
Elife ; 5: e09531, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814051

RESUMO

During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.


Assuntos
Epigênese Genética , Neurônios/fisiologia , Córtex Somatossensorial/embriologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio LIM/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/análise , Camundongos , Proteínas Repressoras/análise , Fatores de Transcrição/análise , Proteínas Supressoras de Tumor/análise
7.
Neuron ; 89(3): 494-506, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26804994

RESUMO

Neuronal subtype-specific transcription factors (TFs) instruct key features of neuronal function and connectivity. Activity-dependent mechanisms also contribute to wiring and circuit assembly, but whether and how they relate to TF-directed neuronal differentiation is poorly investigated. Here we demonstrate that the TF Cux1 controls the formation of the layer II/III corpus callosum (CC) projections through the developmental transcriptional regulation of Kv1 voltage-dependent potassium channels and the resulting postnatal switch to a Kv1-dependent firing mode. Loss of Cux1 function led to a decrease in the expression of Kv1 transcripts, aberrant firing responses, and selective loss of CC contralateral innervation. Firing and innervation were rescued by re-expression of Kv1 or postnatal reactivation of Cux1. Knocking down Kv1 mimicked Cux1-mediated CC axonal loss. These findings reveal that activity-dependent processes are central bona fide components of neuronal TF-differentiation programs and establish the importance of intrinsic firing modes in circuit assembly within the neocortex.


Assuntos
Potenciais de Ação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Superfamília Shaker de Canais de Potássio/fisiologia , Animais , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/fisiologia , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Superfamília Shaker de Canais de Potássio/biossíntese , Superfamília Shaker de Canais de Potássio/genética
8.
Neurobiol Aging ; 33(9): 2125-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21816512

RESUMO

This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.


Assuntos
Neuropeptídeo Y/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/prevenção & controle , Adrenérgicos/toxicidade , Análise de Variância , Animais , Animais Recém-Nascidos , Arginina/análogos & derivados , Arginina/farmacologia , Autorradiografia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Lateralidade Funcional , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroblastoma/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/prevenção & controle , Nortropanos/farmacocinética , Oligopeptídeos/uso terapêutico , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ratos , Ratos Wistar , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/deficiência , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA