Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 29(2): 217-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19095998

RESUMO

BACKGROUND: Although, endothelial nitric oxide (NO) synthase (eNOS) is believed to antagonize vascular remodeling induced by the angiotensin II (AngII) type-1 receptor, the exact signaling mechanism remains unclear. METHODS AND RESULTS: By expressing eNOS to vascular smooth muscle cells (VSMCs) via adenovirus, we investigated a signal transduction mechanism of the eNOS gene transfer in preventing vascular remodeling induced by AngII. We found marked inhibition of AngII-induced Rho/Rho-kinase activation and subsequent VSMC migration by eNOS gene transfer whereas G(q)-dependent transactivation of the epidermal growth factor receptor by AngII remains intact. This could be explained by the specific inhibition of G(12/13) activation by eNOS-mediated G(12/13) phosphorylation. CONCLUSIONS: The eNOS/NO cascade specifically targets the Rho/Rho-kinase system via inhibition of G(12/13) to prevent vascular migration induced by AngII, representing a novel signal cross-talk in cardiovascular protection by NO.


Assuntos
Movimento Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Quinases Associadas a rho/metabolismo , Adenoviridae/genética , Angiotensina II/metabolismo , Animais , Bovinos , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Receptores ErbB/metabolismo , Vetores Genéticos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Proteína Fosfatase 1/metabolismo , Ratos , Transdução de Sinais , Fatores de Tempo , Transdução Genética
2.
Endocrinology ; 149(7): 3569-75, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18356277

RESUMO

The angiotensin II (AngII) type 1 receptor (AT(1)) plays a critical role in hypertrophy of vascular smooth muscle cells (VSMCs). Although it is well known that G(q) is the major G protein activated by the AT(1) receptor, the requirement of G(q) for AngII-induced VSMC hypertrophy remains unclear. By using cultured VSMCs, this study examined the requirement of G(q) for the epidermal growth factor receptor (EGFR) pathway, the Rho-kinase (ROCK) pathway, and subsequent hypertrophy. AngII-induced intracellular Ca(2+) elevation was completely inhibited by a pharmacological G(q) inhibitor as well as by adenovirus encoding a G(q) inhibitory minigene. AngII (100nm)-induced EGFR transactivation was almost completely inhibited by these inhibitors, whereas these inhibitors only partially inhibited AngII (100nm)-induced phosphorylation of a ROCK substrate, myosin phosphatase target subunit-1. Stimulation of VSMCs with AngII resulted in an increase of cellular protein and cell volume but not in cell number. The G(q) inhibitors completely blocked these hypertrophic responses, whereas a G protein-independent AT(1) agonist did not stimulate these hypertrophic responses. In conclusion, G(q) appears to play a major role in the EGFR pathway, leading to vascular hypertrophy induced by AngII. Vascular G(q) seems to be a critical target of intervention against cardiovascular diseases associated with the enhanced renin-angiotensin system.


Assuntos
Angiotensina II/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Adenoviridae/genética , Animais , Cálcio/metabolismo , Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hipertrofia , Immunoblotting , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Quinases Associadas a rho/metabolismo
3.
Clin Sci (Lond) ; 112(8): 417-28, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17346243

RESUMO

The intracellular signal transduction of AngII (angiotensin II) has been implicated in cardiovascular diseases, such as hypertension, atherosclerosis and restenosis after injury. AT(1) receptor (AngII type-1 receptor), a G-protein-coupled receptor, mediates most of the physiological and pathophysiological actions of AngII, and this receptor is predominantly expressed in cardiovascular cells, such as VSMCs (vascular smooth muscle cells). AngII activates various signalling molecules, including G-protein-derived second messengers, protein kinases and small G-proteins (Ras, Rho, Rac etc), through the AT(1) receptor leading to vascular remodelling. Growth factor receptors, such as EGFR (epidermal growth factor receptor), have been demonstrated to be 'trans'-activated by the AT(1) receptor in VSMCs to mediate growth and migration. Rho and its effector Rho-kinase/ROCK are also implicated in the pathological cellular actions of AngII in VSMCs. Less is known about the endothelial AngII signalling; however, recent studies suggest the endothelial AngII signalling positively, as well as negatively, regulates the NO (nitric oxide) signalling pathway and, thereby, modulates endothelial dysfunction. Moreover, selective AT(1)-receptor-interacting proteins have recently been identified that potentially regulate AngII signal transduction and their pathogenic functions in the target organs. In this review, we focus our discussion on the recent findings and concepts that suggest the existence of the above-mentioned novel signalling mechanisms whereby AngII mediates the formation of cardiovascular diseases.


Assuntos
Angiotensina II/metabolismo , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Receptores de Fatores de Crescimento/metabolismo , Sistema Renina-Angiotensina/fisiologia
4.
Mol Cell Biol ; 23(5): 1581-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12588978

RESUMO

Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.


Assuntos
Metaloendopeptidases/metabolismo , Músculo Liso Vascular/citologia , Proteína Quinase C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases/metabolismo , Acetofenonas/farmacologia , Adenoviridae/genética , Animais , Benzopiranos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Genes Dominantes , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Janus Quinase 2 , Modelos Biológicos , Oxirredução , Testes de Precipitina , Proteína Quinase C-delta , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção
5.
Arterioscler Thromb Vasc Biol ; 26(9): e133-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16840716

RESUMO

BACKGROUND: Angiotensin II (Ang II) promotes growth of vascular smooth muscle cells (VSMCs) via epidermal growth factor (EGF) receptor (EGFR) transactivation mediated through a metalloprotease-dependent shedding of heparin-binding EGF-like growth factor (HB-EGF). However, the identity of the metalloprotease responsible for this process remains unknown. METHODS AND RESULTS: To identify the metalloprotease required for Ang II-induced EGFR transactivation, primary cultured aortic VSMCs were infected with retrovirus encoding dominant negative (dn) mutant of ADAM10 or ADAM17. EGFR transactivation induced by Ang II was inhibited in VSMCs infected with dnADAM17 retrovirus but not with dnADAM10 retrovirus. However, Ang II comparably stimulated intracellular Ca2+ elevation and JAK2 tyrosine phosphorylation in these VSMCs. In addition, dnADAM17 inhibited HB-EGF shedding induced by Ang II in A10 VSMCs expressing the AT1 receptor. Moreover, Ang II enhanced protein synthesis and cell volume in VSMCs infected with control retrovirus, but not in VSMCs infected with dnADAM17 retrovirus. CONCLUSIONS: ADAM17 activated by the AT1 receptor is responsible for EGFR transactivation and subsequent protein synthesis in VSMCs. These findings demonstrate a previously missing molecular mechanism by which Ang II promotes vascular remodeling.


Assuntos
Proteínas ADAM/metabolismo , Angiotensina II/farmacologia , Receptores ErbB/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Ativação Transcricional , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Células Cultivadas , Genes Dominantes , Hipertrofia , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Transfecção
6.
Endocrinology ; 147(12): 5914-20, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16980435

RESUMO

Enhanced angiotensin II (AngII) action has been implicated in endothelial dysfunction that is characterized as decreased nitric oxide availability. Although endothelial cells have been reported to express AngII type 1 (AT1) receptors, the exact role of AT1 in regulating endothelial NO synthase (eNOS) activity remains unclear. We investigated the possible regulation of eNOS through AT1 in bovine aortic endothelial cells (BAECs) and its functional significance in rat aortic vascular smooth muscle cells (VSMCs). In BAECs infected with adenovirus encoding AT1 and in VSMCs infected with adenovirus encoding eNOS, AngII rapidly stimulated phosphorylation of eNOS at Ser1179. This was accompanied with increased cGMP production. These effects were blocked by an AT1 antagonist. The cGMP production was abolished by a NOS inhibitor as well. To explore the importance of eNOS phosphorylation, VSMCs were also infected with adenovirus encoding S1179A-eNOS. AngII did not stimulate cGMP production in VSMCs expressing S1179A. However, S1179A was able to enhance basal NO production as confirmed with cGMP production and enhanced vasodilator-stimulated phosphoprotein phosphorylation. Interestingly, S1179A prevented the hypertrophic response similar to wild type in VSMCs. From these data, we conclude that the AngII/AT1 system positively couples to eNOS via Ser1179 phosphorylation in ECs and VSMCs if eNOS and AT1 coexist. However, basal level NO production may be sufficient for prevention of AngII-induced hypertrophy by eNOS expression. These data demonstrate a novel molecular mechanism of eNOS regulation and function and thus provide useful information for eNOS gene therapy under endothelial dysfunction.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Angiotensina II/farmacologia , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Endotélio Vascular/metabolismo , Ativação Enzimática , Técnicas de Transferência de Genes , Hipertrofia/genética , Fosforilação/efeitos dos fármacos , Ratos , Transfecção
7.
Curr Pharm Biotechnol ; 7(2): 81-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16724941

RESUMO

Reactive oxygen species (ROS) are proposed to induce cardiovascular diseases, such as atherosclerosis and hypertension, through several mechanisms. One such mechanism involves ROS acting as intracellular second messengers, which lead to induction of unique signal transductions. Angiotensin II (AngII), a potent cardiovascular pathogen, stimulates ROS production through vascular NADPH oxidases. The ROS production induced by AngII activates downstream ROS-sensitive kinases that are critical in mediating cardiovascular remodeling. Recent advances in gene transfer/knockout techniques have lead to numerous in vitro and in vivo studies that identify the potential components and mechanisms of ROS signal transduction by AngII which promote cardiovascular remodeling. In this review, we will focus our discussion on the signal transduction research elucidating ROS production and function induced by AngII using currently available molecular biotechnologies.


Assuntos
Angiotensina II/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Espécies Reativas de Oxigênio/farmacologia
8.
Curr Vasc Pharmacol ; 4(1): 67-78, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16472178

RESUMO

Accumulating evidence strongly implicates angiotensin II (AngII) intracellular signaling in mediating cardiovascular diseases such as hypertension, atherosclerosis and restenosis after vascular injury. In vascular smooth muscle cells (VSMCs), through its G-protein-coupled AngII Type 1 receptor (AT(1)), AngII activates various intracellular protein kinases, such as receptor or non-receptor tyrosine kinases, which includes epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Src, PYK2, FAK, JAK2. In addition, AngII activates serine/threonine kinases such as mitogen-activated protein kinase (MAPK) family, p70 S6 kinase, Akt/protein kinase B and various protein kinase C isoforms. In VSMCs, AngII also induces the generation of intracellular reactive oxygen species (ROS), which play critical roles in activation and modulation of above signal transduction. Less is known about endothelial cell (EC) AngII signaling than VSMCs, however, recent studies suggest that endothelial AngII signaling negatively regulates the nitric oxide (NO) signaling pathway and thereby induces endothelial dysfunction. Moreover, in both VSMCs and ECs, AngII signaling cross-talk with insulin signaling might be involved in insulin resistance, an important risk factor in the development of cardiovascular diseases. In fact, clinical and pharmacological studies showed that AngII infusion induces insulin resistance and AngII converting enzyme inhibitors and AT(1) receptor blockers improve insulin sensitivity. In this review, we focus on the recent findings that suggest the existence of novel signaling mechanisms whereby AngII mediates processes, such as activation of receptor or non-receptor tyrosine kinases and ROS, as well as cross-talk between insulin and NO signal transduction in VSMCs and ECs.


Assuntos
Angiotensina II/fisiologia , Endotélio Vascular/fisiologia , Músculo Liso Vascular/fisiologia , Proteínas Quinases/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/farmacologia , Doenças Cardiovasculares/etiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Quinases/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Arterioscler Thromb Vasc Biol ; 25(9): 1831-6, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15994438

RESUMO

BACKGROUND: Rho and its effector Rho-kinase/ROCK mediate cytoskeletal reorganization as well as smooth muscle contraction. Recent studies indicate that Rho and ROCK are critically involved in vascular remodeling. Here, we tested the hypothesis that Rho/ROCK are critically involved in angiotensin II (Ang II)-induced migration of vascular smooth muscle cells (VSMCs) by mediating a specific signal cross-talk. METHODS AND RESULTS: Immunoblotting demonstrated that Ang II stimulated phosphorylation of a ROCK substrate, regulatory myosin phosphatase targeting subunit (MYPT)-1. Phosphorylation of MYPT-1 as well as migration of VSMCs induced by Ang II was inhibited by dominant-negative Rho (dnRho) or ROCK inhibitor, Y27632. Ang II-induced c-Jun NH2-terminal kinase (JNK) activation, but extracellular signal-regulated kinase (ERK) activation was not mediated through Rho/ROCK. Thus, infection of adenovirus encoding dnJNK inhibited VSMC migration by Ang II. We have further demonstrated that the Rho/ROCK activation by Ang II requires protein kinase C-delta (PKCdelta) and proline-rich tyrosine kinase 2 (PYK2) activation, but not epidermal growth factor receptor transactivation. Also, VSMCs express PDZ-Rho guanine nucleotide exchange factor (GEF) and Ang II stimulated PYK2 association with tyrosine phosphorylated PDZ-RhoGEF. CONCLUSIONS: PKCdelta/PYK2-dependent Rho/ROCK activation through PDZ-RhoGEF mediates Ang II-induced VSMC migration via JNK activation in VSMCs, providing a novel mechanistic role of the Rho/ROCK cascade that is involved in vascular remodeling.


Assuntos
Movimento Celular/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adenoviridae/genética , Angiotensina II/farmacologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Músculo Liso Vascular/efeitos dos fármacos , Proteína Quinase C-delta/metabolismo , Receptor Cross-Talk/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho , Vasoconstritores/farmacologia , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho
10.
Circulation ; 106(8): 909-12, 2002 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12186792

RESUMO

BACKGROUND: Angiotensin II (Ang II) is a vasoconstrictor but also a growth factor. However, the Ang II type 1 receptor does not have a tyrosine kinase domain that mediates the cellular signals for mitosis. We have shown that Ang II acts via "trans"-activation of the epidermal growth factor receptor (EGFR) to induce activation of tyrosine kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) in vascular smooth muscle cells (VSMCs). To examine whether EGFR is involved in the development of left ventricular hypertrophy (LVH), we inhibited EGFR with a specific antisense oligodeoxynucleotide to attenuate the Ang II-induced cardiovascular hypertrophic effects. METHODS AND RESULTS: The antisense oligodeoxynucleotide to EGFR (EGFR-AS) was designed and tested on Ang II-induced ERK activation in cultured VSMCs. We also investigated the effects of EGFR-AS on LVH and blood pressure (BP) in Ang II-infused hypertensive rats. In VSMCs, EGFR-AS (2.5 micromol/L) reduced EGFR expression and inhibited the Ang II-induced phosphorylation of ERK. In rats, Ang II (150 ng/h for 14 days) increased BP compared with controls (184+/-6 mm Hg versus 122+/-3 mm Hg; n=7; P<0.01). Continuous intravenous infusion of EGFR-AS (2 mg/kg) decreased BP (169+/-8 mm Hg; n=8; P<0.05). Ang II infusion increased the left ventricular/body weight (LV/BW) ratio compared with control rats (2.75+/-0.08 versus 2.33+/-0.07; P<0.01). EGFR-AS, but not EGFR-sense, normalized the LV/BW in Ang II-infused rats (2.32+/-0.06; P<0.01) and attenuated Ang II-enhanced EGFR expression and ERK phosphorylation. CONCLUSION: Ang II requires EGFR to mediate ERK activation in VSMCs and the heart. EGFR plays a critical role in the LVH induced by Ang II.


Assuntos
Angiotensina II/farmacologia , Receptores ErbB/antagonistas & inibidores , Hipertensão/etiologia , Hipertrofia Ventricular Esquerda/etiologia , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Animais , Pressão Sanguínea , Receptores ErbB/genética , Receptores ErbB/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/terapia , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/terapia , Cinética , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Antioxid Redox Signal ; 7(7-8): 1053-61, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998260

RESUMO

Although there is an abundance of evidence suggesting that insulin resistance plays a significant role in the vasculature, the precise mechanistic role involved still remains unclear. In this review, we discuss the current background of insulin resistance in the context of insulin signaling and action in the vasculature. Also, studies suggest that insulin resistance, diabetes, and cardiovascular disease all share a common involvement with oxidative stress. Recently, we reported that lysophosphatidylcholine, a major bioactive product of oxidized low-density lipoprotein, and angiotensin II, a vasoactive hormone and a potent inducer of reactive oxygen species (ROS), negatively regulate insulin signaling in vascular smooth muscle cells (VSMCs). In endothelial cells, insulin stimulates the release of nitric oxide, which results in VSMC relaxation and inhibition of atherosclerosis. Other data suggest that angiotensin II inhibits the vasodilator effects of insulin through insulin receptor substrate-1 phosphorylation at Ser312 and Ser616. Moreover, ROS impair insulin-induced vasorelaxation by neutralizing nitric oxide to form peroxynitrite. Thus, evidence is growing to enable us to better understand mechanistically the relationship between insulin/insulin resistance and ROS in the vasculature, and the impact they have on cardiovascular disease.


Assuntos
Células Endoteliais/metabolismo , Insulina/metabolismo , Músculo Liso Vascular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Humanos , Músculo Liso Vascular/irrigação sanguínea
12.
Antioxid Redox Signal ; 7(9-10): 1315-26, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16115037

RESUMO

Reactive oxygen species (ROS) are proposed to induce cardiovascular diseases, such as atherosclerosis, hypertension, restenosis, and fibrosis, through several mechanisms. One such mechanism involves ROS acting as intracellular second messengers, which lead to induction of unique signal transductions. Angiotensin II (AngII), a potent cardiovascular pathogen, stimulates ROS production through the G protein-coupled AngII type 1 receptor expressed in its target organs, such as vascular tissues, heart, and kidney. Recent accumulating evidence indicates that through ROS production, AngII activates downstream ROS-sensitive kinases that are critical in mediating cardiovascular remodeling. Each of these ROS-sensitive kinases could potentially mediate its own specific function. In this review, we will focus our discussion on the current findings that suggest novel mechanisms of how AngII mediates activation of these redox-sensitive kinases in target organs, as well as the pathological significance of their activation.


Assuntos
Angiotensina II/metabolismo , Regulação Enzimológica da Expressão Gênica , Oxirredução , Animais , Fibroblastos/metabolismo , Humanos , Modelos Biológicos , Espécies Reativas de Oxigênio , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Distribuição Tecidual
13.
Artigo em Inglês | MEDLINE | ID: mdl-16250862

RESUMO

Accumulating evidence strongly implicates the critical roles of intracellular signaling of angiotensin II (AngII) in mediating cardiovascular diseases such as hypertension, atherosclerosis, and restenosis after vascular injury. The importance of AngII signals has also been reported in endothelial dysfunction and insulin resistance, two strong predictors of cardiovascular disease. Through its G protein-coupled AngII type-1 receptor (AT1), AngII activates various intracellular protein kinases, such as receptor or non-receptor tyrosine kinases and serine/threonine kinases. Activation of these kinases requires both G protein-dependent and independent pathways, reactive oxygen species and a metalloprotease, and each kinase could be involved specifically in mediating pathophysiological function of the AT1 receptor target organs. In fact, some of the kinases are indispensable for AngII-induced hypertrophy and migration. The role of these AT1-activated kinases in mediating vascular remodeling, vascular contractility, endothelial dysfunction, and insulin resistance will be discussed in this review. In addition, the AT1 receptor undergoes rapid phosphorylation, desensitization, and internalization upon AngII stimulation. Recent studies with site-directed mutagenesis of the AT1 receptor not only elucidated a G protein interaction and desensitization of the receptor, but also demonstrated a structural requirement of the receptor for downstream signal transduction. Thus, AT1 mutants have provided an excellent means to examine the mechanism of signal transduction and their significance in mediating AngII function. Taken together, in this review, we will focus our discussion on the recent findings of the signal transduction research elucidating novel signaling mechanisms of the AT1 receptor that are relevant to the vascular pathophysiology of AngII.


Assuntos
Angiotensina II/metabolismo , Músculo Liso Vascular/fisiopatologia , Proteínas Quinases/metabolismo , Receptores de Angiotensina/metabolismo , Transdução de Sinais , Humanos , Músculo Liso Vascular/metabolismo , Receptores de Angiotensina/química , Relação Estrutura-Atividade
14.
Mol Endocrinol ; 16(2): 367-77, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11818507

RESUMO

In vascular smooth muscle cells, angiotensin II (AngII) stimulates association of its G protein-coupled AngII type 1 (AT(1)) receptor with Janus kinase 2 (JAK2), resulting in the activation of signal transducer and activator of transcription proteins. Although the association and activation of subsequent signal transducer and activator of transcription proteins appear to prerequire JAK2 activation, the signaling mechanism by which the AT(1) receptor activates JAK2 remains uncertain. Here, we have examined the signaling mechanism required for JAK2 activation by AngII in vascular smooth muscle cells. We found that AngII, through the AT(1) receptor, rapidly stimulated JAK2 phosphorylation at Tyr(1007/1008), the critical sites for the kinase activation. By using selective agonists and inhibitors, we demonstrated that PLC and its derived signaling molecules, phosphatidylinositol triphosphate/Ca(2+) and diacylglycerol/PKC, were essential for AngII-induced JAK2 phosphorylation. The PKC isoform required for JAK2 activation appears to be PKCdelta since a selective PKCdelta but not PKCalpha/beta inhibitor and dominant-negative PKCdelta overexpression inhibited JAK2 activation. We further examined a link between JAK2 and a Ca(2+)/PKC-sensitive tyrosine kinase, PYK2. We found that PYK2 activation by AngII requires PKCdelta, and that PYK2 associates with JAK2 constitutively. Moreover, transfection of two distinct PYK2 dominant-negative mutants markedly inhibited AngII-induced JAK2 activation. From these data we conclude that AT(1)-derived signaling molecules, specifically Ca(2+) and PKCdelta, participate in AngII-induced JAK2 activation through PYK2. These data provide a new mechanistic insight by which the hormone AngII exerts its cytokine-like actions in mediating vascular remodeling.


Assuntos
Angiotensina II/farmacologia , Cálcio/farmacologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Quinase 2 de Adesão Focal , Imuno-Histoquímica , Isoenzimas/antagonistas & inibidores , Janus Quinase 2 , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/metabolismo , Éteres Fosfolipídicos/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C-delta , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Receptores de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
15.
Antioxid Redox Signal ; 5(6): 771-80, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14588150

RESUMO

Enhanced production of reactive oxygen species (ROS) such as H(2)O(2) and a failure in ROS removal by scavenging systems are hallmarks of several cardiovascular diseases such as atherosclerosis and hypertension. ROS act as second messengers that play a prominent role in intracellular signaling and cellular function. In vascular smooth muscle cells (VSMCs), a vascular pathogen, angiotensin II, appears to initiate growth-promoting signal transduction through ROS-sensitive tyrosine kinases. However, the precise mechanisms by which tyrosine kinases are activated by ROS remain unclear. In this review, the current knowledge that suggests how certain tyrosine kinases are activated by ROS, along with their functional significance in VSMCs, will be discussed. Recent findings suggest that transactivation of the epidermal growth factor receptor by ROS requires metalloprotease-dependent heparin-binding epidermal growth factor-like growth factor production, whereas other ROS-sensitive tyrosine kinases such as PYK2, JAK2, and platelet-derived growth factor receptor require activation of protein kinase C-delta. Each of these ROS-sensitive kinases could mediate specific signaling critical for pathophysiological responses. Detailed analysis of the mechanism of cross-talk and the downstream function of these various tyrosine kinases will yield new therapeutic interventions for cardiovascular disease.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio , Animais , Doenças Cardiovasculares/patologia , Células Cultivadas , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Humanos , Modelos Biológicos , Fatores de Risco , Transdução de Sinais , Ativação Transcricional
16.
Eur J Pharmacol ; 443(1-3): 47-50, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-12044791

RESUMO

Angiotensin II activates three major mitogen-activated protein kinases (MAPK) in vascular smooth muscle cells. Although other angiotensin II-induced MAPKs activation require transactivation of a growth factor receptor, the detailed mechanism by which angiotensin II activates c-Jun NH(2)-terminal kinase (JNK) remains unclear. Here, an immunosuppressant, cyclosporin A but not FK506, selectively inhibited angiotensin II-induced JNK activation in vascular smooth muscle cells. However, cyclosporin A had no inhibitory effect on angiotensin II-induced protein synthesis. Thus, angiotensin II-induced JNK activation but not protein synthesis is mediated by a mechanism sensitive to cyclosporin A, which is independent from calcineurin in vascular smooth muscle cells.


Assuntos
Angiotensina II/farmacologia , Ciclosporina/farmacologia , Imunossupressores/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Biossíntese de Proteínas , Angiotensina II/metabolismo , Animais , Anisomicina/farmacologia , Aorta Torácica , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Leucina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Fosforilação , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Tacrolimo/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
17.
Exp Biol Med (Maywood) ; 228(7): 836-42, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12876303

RESUMO

Both insulin resistance and reactive oxygen species (ROS) have been reported to play essential pathophysiological roles in cardiovascular diseases, such as hypertension and atherosclerosis. However, the mechanistic link between ROS, such as H2O2 and insulin resistance in the vasculature, remains undetermined. Akt, a Ser/Thr kinase, mediates various biological responses induced by insulin. In this study, we examined the effects of H2O2 on Akt activation in the insulin-signaling pathway in vascular smooth muscle cells (VSMCs). In VSMCs, insulin stimulates Akt phosphorylation at Ser473. Pretreatment with H2O2 concentration- and time-dependently inhibited insulin-induced Akt phosphorylation with significant inhibition observed at 50 microM for 10 min. A ROS inducer, diamide, also inhibited insulin-induced Akt phosphorylation. In addition, H2O2 inhibited insulin receptor binding partially and inhibited insulin receptor autophosphorylation almost completely. However, pretreatment with a protein kinase C inhibitor, GF109203X (2 microM), for 30 min did not block the inhibitory effects of H2O2 on insulin-induced Akt phosphorylation, suggesting that protein kinase C is not involved in the inhibition by H2O2. We conclude that ROS inhibit a critical insulin signal transduction component required for Akt activation in VSMCs, suggesting potential cellular mechanisms of insulin resistance, which would require verification in vivo.


Assuntos
Peróxido de Hidrogênio/farmacologia , Insulina/farmacologia , Músculo Liso Vascular/metabolismo , Proteínas Serina-Treonina Quinases , Animais , Diamida/farmacologia , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Insulina/metabolismo , Maleimidas/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
18.
Life Sci ; 72(6): 659-67, 2002 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-12467906

RESUMO

Bainiku-ekisu, the fruit-juice concentrate of the Oriental plum (Prunus mume) has recently been shown to improve human blood fluidity. We have shown that angiotensin II (AngII) stimulates growth of vascular smooth muscle cells (VSMCs) through epidermal growth factor (EGF) receptor transactivation that involves reactive oxygen species (ROS) production. To better understanding the possible cardiovascular protective effect of Bainiku-ekisu, we have studied whether Bainiku-ekisu inhibits AngII-induced growth promoting signals in VSMCs. Bainiku-ekisu markedly inhibited AngII-induced EGF receptor transactivation. H(2)O(2)-induced EGF receptor transactivation was also inhibited by Bainiku-ekisu. Thus, Bainiku-ekisu markedly inhibited AngII-induced extracellular signal-regulated kinase (ERK) activation. However, EGF-induced ERK activation was not affected by Bainiku-ekisu. AngII stimulated leucine uptake in VSMCs that was significantly inhibited by Bainiku-ekisu. Also, Bainiku-ekisu possesses a potent antioxidant activity. Since the activation of EGF receptor, ERK and the production of ROS play central roles in mediating AngII-induced vascular remodeling, these data suggest that Bainiku-ekisu could exert a powerful cardiovascular protective effect with regard to cardiovascular diseases.


Assuntos
Angiotensina II/farmacologia , Ácido Cítrico/análogos & derivados , Ácido Cítrico/farmacologia , Furanos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Prunus , Transdução de Sinais , Animais , Cálcio/metabolismo , Células Cultivadas , Ácido Cítrico/isolamento & purificação , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Furanos/isolamento & purificação , Peroxidação de Lipídeos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Biossíntese de Proteínas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ativação Transcricional
19.
PLoS One ; 7(4): e35632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558183

RESUMO

BACKGROUND: Pressure overload and prolonged angiotensin II (Ang II) infusion elicit cardiac hypertrophy in Ang II receptor 1 (AT(1)) null mouse, whereas Ang II receptor 2 (AT(2)) gene deletion abolishes the hypertrophic response. The roles and signals of the cardiac AT(2) receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF) was shown to bind to the AT(2) receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets. METHODOLOGY AND PRINCIPAL FINDINGS: PLZF knockout and age-matched wild-type (WT) mice were treated with Ang II, infused at a rate of 4.2 ng·kg(-1)·min(-1) for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF knockout and WT mice (140 mmHg). WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion. In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT(2) receptor blocker given to Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT(2) receptor for cardiac hypertrophy. Chromatin immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in vivo produced a corresponding repression of GATA4 protein. CONCLUSIONS: PLZF is an important AT(2) receptor binding protein in mediating Ang II induced cardiac hypertrophy through an AT(2) receptor-dependent signal pathway. The angiotensin II-AT(2)-PLZF-GATA4 signal may further augment Ang II induced pathological effects on cardiomyocytes.


Assuntos
Angiotensina II/efeitos adversos , Cardiomegalia/metabolismo , Fibrose/metabolismo , Fator de Transcrição GATA4/genética , Fatores de Transcrição Kruppel-Like/deficiência , Receptor Tipo 2 de Angiotensina/metabolismo , Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 2 de Angiotensina II/administração & dosagem , Animais , Sítios de Ligação , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/complicações , Cardiomegalia/fisiopatologia , Fibrose/induzido quimicamente , Fibrose/complicações , Fibrose/fisiopatologia , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína com Dedos de Zinco da Leucemia Promielocítica , Ligação Proteica , Receptor Tipo 2 de Angiotensina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos
20.
Hypertension ; 55(1): 161-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901155

RESUMO

Vascular smooth muscle cell hypertrophy, proliferation, or migration occurs in hypertension, atherosclerosis, and restenosis after angioplasty, leading to pathophysiological vascular remodeling. Angiotensin II and platelet-derived growth factor are well-known participants of vascular remodeling and activate a myriad of downstream protein kinases, including p21-activated protein kinase (PAK1). PAK1, an effector kinase of small GTPases, phosphorylates several substrates to regulate cytoskeletal reorganization. However, the exact role of PAK1 activation in vascular remodeling remains to be elucidated. Here, we have hypothesized that PAK1 is a critical target of intervention for the prevention of vascular remodeling. Adenoviral expression of dominant-negative PAK1 inhibited angiotensin II-stimulated vascular smooth muscle cell migration. It also inhibited vascular smooth muscle cell proliferation induced by platelet-derived growth factor. PAK1 was activated in neointima of the carotid artery after balloon injury in the rat. Moreover, marked inhibition of the neointima hyperplasia was observed in a dominant-negative PAK1 adenovirus-treated carotid artery after the balloon injury. Taken together, these results suggest that PAK1 is involved in both angiotensin II and platelet-derived growth factor-mediated vascular smooth muscle cell remodeling, and inactivation of PAK1 in vivo could be effective in preventing pathophysiological vascular remodeling.


Assuntos
Lesões das Artérias Carótidas/terapia , Artéria Carótida Primitiva/patologia , Miócitos de Músculo Liso/metabolismo , Quinases Ativadas por p21/metabolismo , Angioplastia com Balão/efeitos adversos , Angiotensina II/farmacologia , Animais , Becaplermina , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/genética , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/fisiopatologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Terapia Genética/métodos , Immunoblotting , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , Ratos , Ratos Sprague-Dawley , Transfecção , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA