Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677515

RESUMO

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Assuntos
Arginina/química , Chaperonas Moleculares/química , Proteína FUS de Ligação a RNA/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cátions , Metilação de DNA , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteína FUS de Ligação a RNA/metabolismo , Tirosina/química , Xenopus laevis
2.
Nature ; 590(7846): 433-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568814

RESUMO

Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol1,2. In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China3,4. Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008-2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014-2017. Furthermore, we find that in this region, carbon tetrachloride (CCl4) and dichlorodifluoromethane (CFC-12) emissions-potentially associated with CFC-11 production-were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017-2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting3,4 and subsequent action by industry and government in China5,6.

3.
FASEB J ; 38(1): e23396, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156414

RESUMO

γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-ß. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Presenilina-2 , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Endopeptidases/metabolismo , Células HEK293 , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
4.
Nat Methods ; 18(7): 747-756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239102

RESUMO

Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas/normas , Metabolômica/normas , Distribuição Aleatória , Manejo de Espécimes , Fluxo de Trabalho
5.
Plant Biotechnol J ; 22(2): 427-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032727

RESUMO

Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled 'central dogma' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.


Assuntos
Carotenoides , Solanum lycopersicum , Carotenoides/metabolismo , Solanum lycopersicum/genética , Reprogramação Metabólica , Plantas/metabolismo , Homeostase
6.
Plant Physiol ; 192(4): 2672-2686, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37148300

RESUMO

Cassava (Manihot esculenta Crantz) is an important staple crop for food security in Africa and South America. The present study describes an integrated genomic and metabolomic approach to the characterization of Latin American cassava germplasm. Classification based on genotyping correlated with the leaf metabolome and indicated a key finding of adaption to specific eco-geographical environments. In contrast, the root metabolome did not relate to genotypic clustering, suggesting the different spatial regulation of this tissue's metabolome. The data were used to generate pan-metabolomes for specific tissues, and the inclusion of phenotypic data enabled the identification of metabolic sectors underlying traits of interest. For example, tolerance to whiteflies (Aleurotrachelus socialis) was not linked directly to cyanide content but to cell wall-related phenylpropanoid or apocarotenoid content. Collectively, these data advance the community resources and provide valuable insight into new candidate parental breeding materials with traits of interest directly related to combating food security.


Assuntos
Manihot , Manihot/genética , Manihot/metabolismo , América Latina , Melhoramento Vegetal , Fenótipo , Genótipo
7.
J Exp Bot ; 75(7): 1997-2012, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064717

RESUMO

In this study, a chilli pepper (Capsicum annuum) panel for post-harvest carotenoid retention was studied to elucidate underlying mechanisms associated with this commercial trait of interest. Following drying and storage, some lines within the panel had an increase in carotenoids approaching 50% compared with the initial content at the fresh fruit stage. Other lines displayed a 25% loss of carotenoids. The quantitative determination of carotenoid pigments with concurrent cellular analysis indicated that in most cases, pepper fruit with thicker (up to 4-fold) lipid exocarp layers and smooth surfaces exhibit improved carotenoid retention properties. Total cutin monomer content increased in medium/high carotenoid retention fruits and subepidermal cutin deposits were responsible for the difference in exocarp thickness. Cutin biosynthesis and cuticle precursor transport genes were differentially expressed between medium/high and low carotenoid retention genotypes, and this supports the hypothesis that the fruit cuticle can contribute to carotenoid retention. Enzymatic degradation of the cuticle and cell wall suggests that in Capsicum the carotenoids (capsanthin and its esters) are embedded in the lipidic exocarp layer. This was not the case in tomato. Collectively, the data suggest that the fruit cuticle could provide an exploitable resource for the enhancement of fruit quality.


Assuntos
Capsicum , Capsicum/metabolismo , Frutas/metabolismo , Carotenoides/metabolismo
8.
Plant Cell Rep ; 43(5): 118, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632121

RESUMO

KEY MESSAGE: Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.


Assuntos
Near Miss , Oryza , Humanos , Oryza/genética , Plantas Geneticamente Modificadas/genética , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Biochem J ; 480(8): 495-520, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022297

RESUMO

Isoprenoids, including dolichols (Dols) and polyprenols (Prens), are ubiquitous components of eukaryotic cells. In plant cells, there are two pathways that produce precursors utilized for isoprenoid biosynthesis: the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. In this work, the contribution of these two pathways to the biosynthesis of Prens and Dols was addressed using an in planta experimental model. Treatment of plants with pathway-specific inhibitors and analysis of the effects of various light conditions indicated distinct biosynthetic origin of Prens and Dols. Feeding with deuteriated, pathway-specific precursors revealed that Dols, present in leaves and roots, were derived from both MEP and MVA pathways and their relative contributions were modulated in response to precursor availability. In contrast, Prens, present in leaves, were almost exclusively synthesized via the MEP pathway. Furthermore, results obtained using a newly introduced here 'competitive' labeling method, designed so as to neutralize the imbalance of metabolic flow resulting from feeding with a single pathway-specific precursor, suggest that under these experimental conditions one fraction of Prens and Dols is synthesized solely from endogenous precursors (deoxyxylulose or mevalonate), while the other fraction is synthesized concomitantly from endogenous and exogenous precursors. Additionally, this report describes a novel methodology for quantitative separation of 2H and 13C distributions observed for isotopologues of metabolically labeled isoprenoids. Collectively, these in planta results show that Dol biosynthesis, which uses both pathways, is significantly modulated depending on pathway productivity, while Prens are consistently derived from the MEP pathway.


Assuntos
Arabidopsis , Dolicóis , Dolicóis/metabolismo , Poliprenois/metabolismo , Ácido Mevalônico/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Terpenos/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495345

RESUMO

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b ([Formula: see text]), which is newly discovered in the atmosphere, and updated results for HCFC-133a ([Formula: see text]) and HCFC-31 ([Formula: see text]ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y-1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016-2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y-1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y-1 Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

11.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488691

RESUMO

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobaias , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Encéfalo/metabolismo , Envelhecimento , Colesterol/metabolismo
12.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891789

RESUMO

This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.


Assuntos
Barreira Hematoencefálica , Proteínas de Junções Íntimas , Junções Íntimas , Barreira Hematoencefálica/metabolismo , Humanos , Proteínas de Junções Íntimas/metabolismo , Animais , Junções Íntimas/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Transdução de Sinais
13.
Plant J ; 110(5): 1516-1528, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322494

RESUMO

Sustainable production of chemicals and improving these biosources by engineering metabolic pathways to create efficient plant-based biofactories relies on the knowledge of available chemical/biosynthetic diversity present in the plant. Nicotiana species are well known for their amenability towards transformation and other new plant breeding techniques. The genus Nicotiana is primarily known through Nicotiana tabacum L., the source of tobacco leaves and all respective tobacco products. Due to the prevalence of the latter, N. tabacum and related Nicotiana species are one of the most extensively studied plants. The majority of studies focused solely on N. tabacum or other individual species for chemotyping. The present study analysed a diversity panel including 17 Nicotiana species and six accessions of Nicotiana benthamiana and created a data set that effectively represents the chemotype core collection of the genus Nicotiana. The utilisation of several analytical platforms and previously published libraries/databases enabled the identification and measurement of over 360 metabolites of a wide range of chemical classes as well as thousands of unknowns with dedicated spectral and chromatographic properties.


Assuntos
Nicotiana , Melhoramento Vegetal , Redes e Vias Metabólicas , Nicotiana/genética , Nicotiana/metabolismo
14.
Plant J ; 111(6): 1550-1564, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822533

RESUMO

Programmable transcriptional regulators based on CRISPR architecture are promising tools for the induction of plant gene expression. In plants, CRISPR gene activation is effective with respect to modulating development processes, such as the flowering time or customizing biochemical composition. The most widely used method for delivering CRISPR components into the plant is Agrobacterium tumefaciens-mediated genetic transformation, either transient or stable. However, as a result of their versatility and their ability to move, virus-derived systems have emerged as an interesting alternative for supplying the CRISPR components to the plant, in particular guide RNA (gRNA), which represents the variable component in CRISPR strategies. In the present study, we describe a Potato virus X-derived vector that, upon agroinfection in Nicotiana benthamiana, serves as a vehicle for delivery of gRNAs, producing highly specific virus-induced gene activation. The system works in combination with a N. benthamiana transgenic line carrying the remaining complementary CRISPR gene activation components, specifically the dCasEV2.1 cassette, which has been shown previously to mediate strong programmable transcriptional activation in plants. Using an easily scalable, non-invasive spraying method, we show that gRNA-mediated activation programs move locally and systemically, generating a strong activation response in different target genes. Furthermore, by activating three different endogenous MYB transcription factors, we demonstrate that this Potato virus X-based virus-induced gene reprogramming strategy results in program-specific metabolic fingerprints in N. benthamiana leaves characterized by distinctive phenylpropanoid-enriched metabolite profiles.


Assuntos
Potexvirus , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Expressão Gênica , Potexvirus/genética , Potexvirus/metabolismo , RNA Guia de Cinetoplastídeos/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo
15.
BMC Plant Biol ; 23(1): 657, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124051

RESUMO

BACKGROUND: Whiteflies are a global threat to crop yields, including the African subsistence crop cassava (Manihot esculenta). Outbreaks of superabundant whitefly populations throughout Eastern and Central Africa in recent years have dramatically increased the pressures of whitefly feeding and virus transmission on cassava. Whitefly-transmitted viral diseases threaten the food security of hundreds of millions of African farmers, highlighting the need for developing and deploying whitefly-resistant cassava. However, plant resistance to whiteflies remains largely poorly characterized at the genetic and molecular levels. Knowledge of cassava-defense programs also remains incomplete, limiting characterization of whitefly-resistance mechanisms. To better understand the genetic basis of whitefly resistance in cassava, we define the defense hormone- and Aleurotrachelus socialis (whitefly)-responsive transcriptome of whitefly-susceptible (COL2246) and whitefly-resistant (ECU72) cassava using RNA-seq. For broader comparison, hormone-responsive transcriptomes of Arabidopsis thaliana were also generated. RESULTS: Whitefly infestation, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) transcriptome responses of ECU72 and COL2246 were defined and analyzed. Strikingly, SA responses were largely reciprocal between the two cassava genotypes and we suggest candidate regulators. While susceptibility was associated with SA in COL2246, resistance to whitefly in ECU72 was associated with ABA, with SA-ABA antagonism observed. This was evidenced by expression of genes within the SA and ABA pathways and hormone levels during A. socialis infestation. Gene-enrichment analyses of whitefly- and hormone-responsive genes suggest the importance of fast-acting cell wall defenses (e.g., elicitor recognition, lignin biosynthesis) during early infestation stages in whitefly-resistant ECU72. A surge of ineffective immune and SA responses characterized the whitefly-susceptible COL2246's response to late-stage nymphs. Lastly, in comparison with the model plant Arabidopsis, cassava's hormone-responsive genes showed striking divergence in expression. CONCLUSIONS: This study provides the first characterization of cassava's global transcriptome responses to whitefly infestation and defense hormone treatment. Our analyses of ECU72 and COL2246 uncovered possible whitefly resistance/susceptibility mechanisms in cassava. Comparative analysis of cassava and Arabidopsis demonstrated that defense programs in Arabidopsis may not always mirror those in crop species. More broadly, our hormone-responsive transcriptomes will also provide a baseline for the cassava community to better understand global responses to other yield-limiting pests/pathogens.


Assuntos
Arabidopsis , Hemípteros , Manihot , Animais , Ácido Abscísico , Manihot/genética , Manihot/metabolismo , Lignina , Arabidopsis/genética , Hemípteros/fisiologia , Perfilação da Expressão Gênica , Verduras/genética , Verduras/metabolismo , Hormônios , Ácido Salicílico/metabolismo , Doenças das Plantas/genética
16.
Plant Biotechnol J ; 21(12): 2683-2697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37749961

RESUMO

Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.


Assuntos
Aminoácidos de Cadeia Ramificada , Solanum lycopersicum , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Solanum lycopersicum/genética , Flavonoides , Leucina , Frutas/genética , Frutas/metabolismo , Isoleucina/metabolismo
17.
Transgenic Res ; 32(4): 265-278, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37166587

RESUMO

Exhaustive analysis of genetically modified crops over multiple decades has increased societal confidence in the technology. New Plant Breeding Techniques are now emerging with improved precision and the ability to generate products containing no foreign DNA and mimic/replicate conventionally bred varieties. In the present study, metabolomic analysis was used to compare (i) tobacco genotypes with and without the CRISPR associated protein 9 (Cas9), (ii) tobacco lines with the edited and non-edited DE-ETIOLATED-1 gene without phenotype and (iii) leaf and fruit tissue from stable non-edited tomato progeny with and without the Cas9. In all cases, multivariate analysis based on the difference test using LC-HRMS/MS and GC-MS data indicated no significant difference in their metabolomes. The variations in metabolome composition that were evident could be associated with the processes of tissue culture regeneration and/or transformation (e.g. interaction with Agrobacterium). Metabolites responsible for the variance included quantitative changes of abundant, well characterised metabolites such as phenolics (e.g. chlorogenic acid) and several common sugars such as fructose. This study provides fundamental data on the characterisation of gene edited crops, that are important for the evaluation of the technology and its assessment. The approach also suggests that metabolomics could contribute to routine product-based analysis of crops/foods generated from New Plant Breeding approaches.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal , Metabolômica
18.
Proc Natl Acad Sci U S A ; 117(42): 26503-26512, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020297

RESUMO

Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the OsSBEIIb gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm. As anticipated, homozygous mutant plants, in which OsSBEIIb was completely inactivated by abolishing the catalytic center and C-terminal regulatory domain, produced opaque seeds with depleted starch reserves. Amylose content in the mutant increased from 19.6 to 27.4% and resistant starch (RS) content increased from 0.2 to 17.2%. Many genes encoding isoforms of AGPase, soluble starch synthase, and other starch branching enzymes were up-regulated, either in their native tissues or in an ectopic manner, whereas genes encoding granule-bound starch synthase, debranching enzymes, pullulanase, and starch phosphorylases were largely down-regulated. There was a general increase in the accumulation of sugars, fatty acids, amino acids, and phytosterols in the mutant endosperm, suggesting that intermediates in the starch biosynthesis pathway increased flux through spillover pathways causing a profound impact on the accumulation of multiple primary and secondary metabolites. Our results provide insights into the broader implications of perturbing starch metabolism in rice endosperm and its impact on the whole plant, which will make it easier to predict the effect of metabolic engineering in cereals for nutritional improvement or the production of valuable metabolites.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Oryza/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Amilopectina/biossíntese , Amilopectina/química , Amilose/biossíntese , Amilose/química , Metabolismo dos Carboidratos , Grão Comestível/genética , Endosperma/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Sementes/metabolismo , Amido/biossíntese , Sintase do Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo
19.
Alzheimers Dement ; 19(12): 5418-5436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37204850

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) have been implicated in the spread of neuropathology in Alzheimer's disease (AD), but their involvement in behavioral outcomes linked to AD remains to be determined. METHODS: EVs isolated from post mortem brain tissue from control, AD, or frontotemporal dementia (FTD) donors, as well as from APP/PS1 mice, were injected into the hippocampi of wild-type (WT) or a humanized Tau mouse model (hTau/mTauKO). Memory tests were carried out. Differentially expressed proteins in EVs were assessed by proteomics. RESULTS: Both AD-EVs and APP/PS1-EVs trigger memory impairment in WT mice. We further demonstrate that AD-EVs and FTD-EVs carry Tau protein, present altered protein composition associated with synapse regulation and transmission, and trigger memory impairment in hTau/mTauKO mice. DISCUSSION: Results demonstrate that AD-EVs and FTD-EVs have negative impacts on memory in mice and suggest that, in addition to spreading pathology, EVs may contribute to memory impairment in AD and FTD. HIGHLIGHTS: Aß was detected in EVs from post mortem AD brain tissue and APP/PS1 mice. Tau was enriched in EVs from post mortem AD, PSP and FTD brain tissue. AD-derived EVs and APP/PS1-EVs induce cognitive impairment in wild-type (WT) mice. AD- and FTD-derived EVs induce cognitive impairment in humanized Tau mice. Proteomics findings associate EVs with synapse dysregulation in tauopathies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , Demência Frontotemporal , Camundongos , Animais , Doença de Alzheimer/patologia , Proteoma , Encéfalo/patologia , Disfunção Cognitiva/complicações , Transtornos da Memória , Sinapses/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
20.
J Biol Chem ; 296: 100631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33823153

RESUMO

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Glicoproteínas de Membrana/fisiologia , Proteínas Mutantes/metabolismo , Mutação , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Receptores Imunológicos/fisiologia , Doença de Alzheimer , Amiloide/metabolismo , Animais , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA