Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(13): 3687-3701, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35712781

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro-fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB-3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB-3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.


Assuntos
Displasia Arritmogênica Ventricular Direita , Adipogenia/fisiologia , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Morte Súbita Cardíaca/patologia , Humanos , Lipídeos , Células Estromais/metabolismo
2.
Part Fibre Toxicol ; 18(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407654

RESUMO

BACKGROUND: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. RESULTS: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. CONCLUSIONS: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality.


Assuntos
Cobalto/toxicidade , Miócitos Cardíacos , Nanopartículas , Óxidos/toxicidade , Animais , Masculino , Nanopartículas/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
3.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366035

RESUMO

The ATP-binding cassette (ABC) transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) play a crucial role in the translocation of a broad range of drugs; data about their expression and activity in lung tissue are controversial. Here, we address their expression, localization and function in EpiAirway™, a three-dimensional (3D)-model of human airways; Calu-3 cells, a representative in vitro model of bronchial epithelium, are used for comparison. Transporter expression has been evaluated with RT-qPCR and Western blot, the localization with immunocytochemistry, and the activity by measuring the apical-to-basolateral and basolateral-to-apical fluxes of specific substrates in the presence of inhibitors. EpiAirway™ and Calu-3 cells express high levels of MRP1 on the basolateral membrane, while they profoundly differ in terms of BCRP and MDR1: BCRP is detected in EpiAirway™, but not in Calu-3 cells, while MDR1 is expressed and functional only in fully-differentiated Calu-3; in EpiAirway™, MDR1 expression and activity are undetectable, consistently with the absence of the protein in specimens from human healthy bronchi. In summary, EpiAirway™ appears to be a promising tool to study the mechanisms of drug delivery in the bronchial epithelium and to clarify the role of ABC transporters in the modulation of the bioavailability of administered drugs.


Assuntos
Brônquios/metabolismo , Epitélio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Part Fibre Toxicol ; 16(1): 25, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234877

RESUMO

BACKGROUND: Non-communicable diseases, intended as the results of a combination of inherited, environmental and biological factors, kill 40 million people each year, equivalent to roughly 70% of all premature deaths globally. The possibility that manufactured nanoparticles (NPs) may affect cardiac performance, has led to recognize NPs-exposure not only as a major Public Health concern, but also as an occupational hazard. In volunteers, NPs-exposure is problematic to quantify. We recently found that inhaled titanium dioxide NPs, one of the most produced engineered nanomaterials, acutely increased cardiac excitability and promoted arrhythmogenesis in normotensive rats by a direct interaction with cardiac cells. We hypothesized that such scenario can be exacerbated by latent cardiovascular disorders such as hypertension. RESULTS: We monitored cardiac electromechanical performance in spontaneously hypertensive rats (SHRs) exposed to titanium dioxide NPs for 6 weeks using a combination of cardiac functional measurements associated with toxicological, immunological, physical and genetic assays. Longitudinal radio-telemetry ECG recordings and multiple-lead epicardial potential mapping revealed that atrial activation times significantly increased as well as proneness to arrhythmia. At the third week of nanoparticles administration, the lung and cardiac tissue encountered a maladaptive irreversible structural remodelling starting with increased pro-inflammatory cytokines levels and lipid peroxidation, resulting in upregulation of the main pro-fibrotic cardiac genes. At the end of the exposure, the majority of spontaneous arrhythmic events terminated, while cardiac hemodynamic deteriorated and a significant accumulation of fibrotic tissue occurred as compared to control untreated SHRs. Titanium dioxide nanoparticles were quantified in the heart tissue although without definite accumulation as revealed by particle-induced X-ray emission and ultrastructural analysis. CONCLUSIONS: The co-morbidity of hypertension and inhaled nanoparticles induces irreversible hemodynamic impairment associated with cardiac structural damage potentially leading to heart failure. The time-dependence of exposure indicates a non-return point that needs to be taken into account in hypertensive subjects daily exposed to nanoparticles.


Assuntos
Coração/efeitos dos fármacos , Hipertensão/patologia , Miocárdio/patologia , Nanopartículas/toxicidade , Titânio/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletrocardiografia , Fibrose , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/fisiopatologia , Ratos Endogâmicos SHR , Telemetria , Função Ventricular Esquerda
5.
Pharmacol Res ; 127: 15-25, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964914

RESUMO

Cardiovascular complications are included among the systemic effects of tyrosine kinase inhibitor (TKI)-based therapeutic strategies. To test the hypothesis that inhibition of Kit tyrosine kinase that promotes cardiac progenitor cell (CPC) survival and function may be one of the triggering mechanisms of imatinib mesylate (IM)-related cardiovascular effects, the anatomical, structural and ultrastructural changes in the heart of IM-treated rats were evaluated. Cardiac anatomy in IM-exposed rats showed a dose-dependent, restrictive type of remodeling and depressed hemodynamic performance in the absence of remarkable myocardial fibrosis. The effects of IM on rat and human CPCs were also assessed. IM induced rat CPC depletion, reduced growth and increased cell death. Similar effects were observed in CPCs isolated from human hearts. These results extend the notion that cardiovascular side effects are driven by multiple actions of IM. The identification of cellular mechanisms responsible for cardiovascular complications due to TKIs will enable future strategies aimed at preserving concomitantly cardiac integrity and anti-tumor activity of advanced cancer treatment.


Assuntos
Cardiomiopatias/induzido quimicamente , Mesilato de Imatinib/toxicidade , Miocárdio/patologia , Células-Tronco/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Miocárdio/ultraestrutura , Ratos
6.
Am J Physiol Heart Circ Physiol ; 310(11): H1622-48, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26993221

RESUMO

c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart.


Assuntos
Antiarrítmicos/uso terapêutico , Fator de Crescimento de Hepatócito/uso terapêutico , Fator de Crescimento Insulin-Like I/uso terapêutico , Infarto do Miocárdio/terapia , Células-Tronco , Animais , Conexina 43/metabolismo , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar
7.
Mol Cancer ; 13: 143, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898067

RESUMO

BACKGROUND: HER-2 represents a relatively new therapeutic target for non small cell lung cancer (NSCLC) patients. The incidence for reported HER-2 overexpression/amplification/mutations ranges from 2 to 20% in NSCLC. Moreover, HER-2 amplification is a potential mechanism of resistance to tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKI) (about 10% of cases). T-DM1, trastuzumab emtansine is an antibody-drug conjugate composed by the monoclonal antibody trastuzumab and the microtubule polymerization inhibitor DM1. The activity of T-DM1 has been studied in breast cancer but the role of T-DM1 in lung cancer remains unexplored. METHODS: Antiproliferative and proapoptotic effects of T-DM1 have been investigated in different NSCLC cell lines by MTT, crystal violet staining, morphological study and Western blotting. HER-2 expression and cell cycle were evaluated by flow cytometry and Western blotting. Antibody dependent cell cytotoxicity (ADCC) was measured with a CytoTox assay. Xenografted mice model has been generated using a NSCLC cell line to evaluate the effect of T-DM1 on tumor growth. Moreover, a morphometric and immunohistochemical analysis of tumor xenografts was conducted. RESULTS: In this study we investigated the effect of T-DM1 in a panel of NSCLC cell lines with different HER-2 expression levels, in H1781 cell line carrying HER-2 mutation and in gefitinib resistant HER-2 overexpressing PC9/HER2cl1 cell clone. T-DM1 efficiently inhibited proliferation with arrest in G2-M phase and induced cell death by apoptosis in cells with a significant level of surface expression of HER-2. Antibody-dependent cytotoxicity assay documented that T-DM1 maintained the same activity of trastuzumab. Our data also suggest that targeting HER-2 with T-DM1 potentially overcomes gefitinib resistance. In addition a correlation between cell density/tumor size with both HER-2 expression and T-DM1 activity was established in vitro and in an in vivo xenograft model. CONCLUSIONS: Our results indicate that targeting HER-2 with T-DM1 may offer a new therapeutic approach in HER-2 over-expressing lung cancers including those resistant to EGFR TKIs.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Maitansina/análogos & derivados , Receptor ErbB-2/genética , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Gefitinibe , Expressão Gênica , Humanos , Imunoconjugados/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Maitansina/química , Maitansina/farmacologia , Camundongos , Camundongos Nus , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Trastuzumab , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Part Fibre Toxicol ; 11: 63, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487314

RESUMO

BACKGROUND: In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body. METHODS: We conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential. RESULTS: Ventricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes. CONCLUSIONS: Acute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Ventrículos do Coração/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/fisiopatologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Dano ao DNA , Acoplamento Excitação-Contração/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/ultraestrutura , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/administração & dosagem , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Ratos Wistar , Titânio/administração & dosagem , Testes de Toxicidade Aguda
9.
Basic Res Cardiol ; 108(2): 334, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23411815

RESUMO

The increasing population of cancer survivors faces considerable morbidity and mortality due to late effects of the antineoplastic therapy. Cardiotoxicity is a major limiting factor of therapy with doxorubicin (DOXO), the most effective anthracycline, and is characterized by a dilated cardiomyopathy that can develop even years after treatment. Studies in animals have proposed the cardiac progenitor cells (CPCs) as the cellular target responsible for DOXO-induced cardiomyopathy but the relevance of these observations to clinical settings is unknown. In this study, the analysis of the DOXO-induced cardiomyopathic human hearts showed that the majority of human CPCs (hCPCs) was senescent. In isolated hCPCs, DOXO triggered DNA damage response leading to apoptosis early after exposure, and telomere shortening and senescence at later time interval. Functional properties of hCPCs, such as migration and differentiation, were also negatively affected. Importantly, the differentiated progeny of DOXO-treated hCPCs prematurely expressed the senescence marker p16(INK4a). In conclusion, DOXO exposure severely affects the population of hCPCs and permanently impairs their function. Premature senescence of hCPCs and their progeny can be responsible for the decline in the regenerative capacity of the heart and may represent the cellular basis of DOXO-induced cardiomyopathy in humans.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiomiopatia Dilatada/induzido quimicamente , Senescência Celular/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Mioblastos Cardíacos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adulto , Antibióticos Antineoplásicos/uso terapêutico , Western Blotting , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/uso terapêutico , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/metabolismo , Homeostase do Telômero , beta-Galactosidase/metabolismo
10.
Curr Cancer Drug Targets ; 23(8): 663-668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36722476

RESUMO

BACKGROUND: Malignant pleural mesothelioma is a pathology with no effective therapy and a poor prognosis. Our previous study demonstrated an in vitro inhibitory effect on mesothelioma cell lines of both the lysate and secretome of adipose tissue-derived Mesenchymal Stromal Cells. The inhibitory activity on tumor growth has been demonstrated also in vivo: five million Mesenchymal Stromal Cells, injected "in situ", produced a significant therapeutic efficacy against MSTO-211H xenograft equivalent to that observed after the systemic administration of paclitaxel. OBJECTIVE: The objective of this study is to evaluate the efficacy of low amount (half a million) Mesenchymal Stromal Cells and micro-fragmented adipose tissues (the biological tissue from which the Mesenchymal Stromal Cells were isolated) on mesothelioma cells growth. METHODS: Tumor cells growth inhibition was evaluated in vitro and in a xenograft model of mesothelioma. RESULTS: The inhibitory effect of micro-fragmented fat from adipose-tissue has been firstly confirmed in vitro on MSTO-211H cell growth. Then the efficacy against the growth of mesothelioma xenografts in mice of both micro-fragmented fat and low amount of Mesenchymal Stromal Cells has been evaluated. Our results confirmed that both Mesenchymal Stromal Cells and micro-fragmented fat, injected "in situ", did not stimulate mesothelioma cell growth. By contrast, micro-fragmented fat produced a significant inhibition of tumor growth and progression, comparable to that observed by the treatment with paclitaxel. Low amount of Mesenchymal Stromal Cells exerted only a little anticancer activity. CONCLUSION: Micro-fragmented fat inhibited mesothelioma cell proliferation in vitro and exerted a significant control of the mesothelioma xenograft growth in vivo.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Animais , Camundongos , Xenoenxertos , Linhagem Celular Tumoral , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Paclitaxel/farmacologia
11.
BMJ Open Respir Res ; 10(1)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37730279

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an irreversible disorder with a poor prognosis. The incomplete understanding of IPF pathogenesis and the lack of accurate animal models is limiting the development of effective treatments. Thus, the selection of clinically relevant animal models endowed with similarities with the human disease in terms of lung anatomy, cell biology, pathways involved and genetics is essential. The bleomycin (BLM) intratracheal murine model is the most commonly used preclinical assay to evaluate new potential therapies for IPF. Here, we present the findings derived from an integrated histomorphometric and transcriptomic analysis to investigate the development of lung fibrosis in a time-course study in a BLM rat model and to evaluate its translational value in relation to IPF. METHODS: Rats were intratracheally injected with a double dose of BLM (days 0-4) and sacrificed at days 7, 14, 21, 28 and 56. Histomorphometric analysis of lung fibrosis was performed on left lung sections. Transcriptome profiling by RNAseq was performed on the right lung lobes and results were compared with nine independent human gene-expression IPF studies. RESULTS: The histomorphometric and transcriptomic analyses provided a detailed overview in terms of temporal gene-expression regulation during the establishment and repair of the fibrotic lesions. Moreover, the transcriptomic analysis identified three clusters of differentially coregulated genes whose expression was modulated in a time-dependent manner in response to BLM. One of these clusters, centred on extracellular matrix (ECM)-related process, was significantly correlated with histological parameters and gene sets derived from human IPF studies. CONCLUSIONS: The model of lung fibrosis presented in this study lends itself as a valuable tool for preclinical efficacy evaluation of new potential drug candidates. The main finding was the identification of a group of persistently dysregulated genes, mostly related to ECM homoeostasis, which are shared with human IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Ratos , Camundongos , Animais , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Homeostase , Perfilação da Expressão Gênica , Bleomicina , Matriz Extracelular/genética
12.
Cancers (Basel) ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35805021

RESUMO

BACKGROUND: The aim of the present study was to dissect the clinical outcome of GB patients through the integration of molecular, immunophenotypic and MR imaging features. METHODS: We enrolled 57 histologically proven and molecularly tested GB patients (5.3% IDH-1 mutant). Two-Dimensional Free ROI on the Biggest Enhancing Tumoral Diameter (TDFRBETD) acquired by MRI sequences were used to perform a manual evaluation of multiple quantitative variables, among which we selected: SD Fluid Attenuated Inversion Recovery (FLAIR), SD and mean Apparent Diffusion Coefficient (ADC). Characterization of the Tumor Immune Microenvironment (TIME) involved the immunohistochemical analysis of PD-L1, and number and distribution of CD3+, CD4+, CD8+ Tumor Infiltrating Lymphocytes (TILs) and CD163+ Tumor Associated Macrophages (TAMs), focusing on immune-vascular localization. Genetic, MR imaging and TIME descriptors were correlated with overall survival (OS). RESULTS: MGMT methylation was associated with a significantly prolonged OS (median OS = 20 months), while no impact of p53 and EGFR status was apparent. GB cases with high mean ADC at MRI, indicative of low cellularity and soft consistency, exhibited increased OS (median OS = 24 months). PD-L1 and the overall number of TILs and CD163+TAMs had a marginal impact on patient outcome. Conversely, the density of vascular-associated (V) CD4+ lymphocytes emerged as the most significant prognostic factor (median OS = 23 months in V-CD4high vs. 13 months in V-CD4low, p = 0.015). High V-CD4+TILs also characterized TIME of MGMTmeth GB, while p53mut appeared to condition a desert immune background. When individual genetic (MGMTunmeth), MR imaging (mean ADClow) and TIME (V-CD4+TILslow) negative predictors were combined, median OS was 21 months (95% CI, 0-47.37) in patients displaying 0-1 risk factor and 13 months (95% CI 7.22-19.22) in the presence of 2-3 risk factors (p = 0.010, HR = 3.39, 95% CI 1.26-9.09). CONCLUSION: Interlacing MRI-immune-genetic features may provide highly significant risk-stratification models in GB patients.

13.
Vascul Pharmacol ; 146: 107110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103993

RESUMO

The mechanisms underlying the success of propranolol in the treatment of infantile hemangioma (IH) remain elusive and do not fully explain the rapid regression of hemangiomatous lesions following drug administration. As autophagy is critically implicated in vascular homeostasis, we determined whether ß-blockers trigger the autophagic flux on infantile hemangioma-derived endothelial cells (Hem-ECs) in vitro. MATERIAL AND METHODS: Fresh tissue specimens, surgically removed for therapeutic purpose to seven children affected by proliferative IH, were subjected to enzymatic digestion. Cells were sorted with anti-human CD31 immunolabeled magnetic microbeads. Following phenotypic characterization, expanded Hem-ECs, at P2 to P6, were exposed to different concentrations (50 µM to 150 µM) of propranolol, atenolol or metoprolol alone and in combination with the autophagy inhibitor Bafilomycin A1. Rapamycin, a potent inducer of autophagy, was also used as control. Autophagy was assessed by Lysotracker Red staining, western blot analysis of LC3BII/LC3BI and p62, and morphologically by transmission electron microscopy. RESULTS: Hem-ECs treated with either propranolol, atenolol or metoprolol displayed positive LysoTracker Red staining. Increased LC3BII/LC3BI ratio, as well as p62 modulation, were documented in ß-blockers treated Hem-ECs. Abundant autophagic vacuoles and multilamellar bodies characterized the cytoplasmic ultrastructural features of autophagy in cultured Hem-ECs exposed in vitro to ß-blocking agents. Importantly, similar biochemical and morphologic evidence of autophagy were observed following rapamycin while Bafilomycin A1 significantly prevented the autophagic flux promoted by ß-blockers in Hem-ECs. CONCLUSION: Our data suggest that autophagy may be ascribed among the mechanisms of action of ß-blockers suggesting new mechanistic insights on the potential therapeutic application of this class of drugs in pathologic conditions involving uncontrolled angiogenesis.


Assuntos
Hemangioma , Propranolol , Antagonistas Adrenérgicos beta/farmacologia , Aminas , Atenolol/farmacologia , Atenolol/uso terapêutico , Autofagia , Proliferação de Células , Criança , Células Endoteliais , Hemangioma/patologia , Humanos , Macrolídeos , Metoprolol/uso terapêutico , Propranolol/farmacologia , Propranolol/uso terapêutico , Sirolimo/farmacologia
14.
JTO Clin Res Rep ; 3(2): 100278, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35199053

RESUMO

INTRODUCTION: ALK tyrosine kinase inhibitors (TKIs) are the standard treatment for advanced ALK-positive NSCLC. Nevertheless, drug resistance inevitably occurs. Here, we report a case of a patient with metastatic ALK-positive lung adenocarcinoma with an impressive resistance to sequential treatment with ALK TKIs mediated by YES1 and MYC amplification in a contest of epithelial-to-mesenchymal transition and high progressive chromosomal instability. METHODS: The patient received, after chemotherapy and 7 months of crizotinib, brigatinib and lorlatinib with no clinical benefit to both treatments. A study of resistance mechanisms was performed with whole exome sequencing on different biological samples; primary cell lines were established from pleural effusion after lorlatinib progression. RESULTS: At whole exome sequencing analysis, YES1 and MYC amplifications were observed both in the pericardial biopsy and the pleural effusion samples collected at brigatinib and lorlatinib progression, respectively. Increasing chromosomal instability from diagnostic biopsy to pleural effusion was also observed. The addition of dasatinib to brigatinib or lorlatinib restored the sensitivity in primary cell lines; data were confirmed also in H3122_ALK-positive model overexpressing both YES1 and MYC. CONCLUSIONS: In conclusion, YES1 and MYC amplifications are candidates to justify a rapid acquired resistance to crizotinib entailing primary brigatinib and lorlatinib resistance. In this context, a combination strategy of ALK TKI with dasatinib could be effective to overcome a rapid resistance.

15.
Tumori ; 108(1): 86-92, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33730957

RESUMO

Radiomics has emerged as a noninvasive tool endowed with the potential to intercept tumor characteristics thereby predicting clinical outcome. In a recent study on resected non-small cell lung cancer (NSCLC), we identified highly prognostic computed tomography (CT) -derived radiomic features (RFs), which in turn were able to discriminate hot from cold tumor immune microenvironment (TIME). We aimed at validating a radiomic model capable of dissecting specific TIME profiles bearing prognostic power in resected NSCLC. The validation cohort included 31 radically resected NSCLCs clinicopathologically matched with the training set (n = 69). TIME was classified in hot and cold according to a multiparametric immunohistochemical analysis involving PD-L1 score and incidence of immune effector phenotypes among tumor infiltrating lymphocytes (TILs). High- throughput radiomic features (n = 841) extracted from CT images were correlated to TIME parameters to ultimately define prognostic classes. We confirmed PD-1 to CD8 ratio as best predictor of clinical outcome among TIME characteristics. Significantly prolonged overall survival (OS) was observed in patients carrying hot (median OS not reached) vs cold (median OS 22 months; hazard ratio 0.28, 95% confidence interval 0.09 -0.82; p = 0.015) immune background, thus validating the prognostic impact of these two TIME categories in resected NSCLC. Importantly, in the validation setting, three out of eight previously identified RFs sharply distinguishing hot from cold TIME were endorsed. Among signature-related RFs, Wavelet-HHH_gldm_HighGrayLevelEmphasis highly performed as descriptor of hot immune contexture (area under the receiver operating characteristic curve 0.94, 95% confidence interval 0.81 -1.00; p = 0.01). Based on our findings, Radiomics may decipher specific TIME profiles providing a noninvasive prognostic approach in resected NSCLC and an exploitable predictive strategy in advanced cases.


Assuntos
Antígeno B7-H1/genética , Antígenos CD8/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Microambiente Tumoral/genética , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Pulmão/patologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Tomografia Computadorizada por Raios X , Microambiente Tumoral/imunologia
16.
J Biomater Appl ; 35(7): 762-775, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32772783

RESUMO

The use of injectable scaffolds to repair the infarcted heart is receiving great interest. Thermosensitive polymers, in situ polymerization, in situ cross-linking, and self-assembling peptides are the most investigated approaches to obtain injectability.Aim of the present work was the preparation and characterization of a novel bioactive scaffold, in form of injectable microspheres, for cardiac repair. Gellan/gelatin microspheres were prepared by a water-in-oil emulsion and loaded by adsorption with Insulin-like growth factor 1 to promote tissue regeneration. Obtained microspheres underwent morphological, physicochemical and biological characterization, including cell culture tests in static and dynamic conditions and in vivo tests. Morphological analysis of the microspheres showed a spherical shape, a microporous surface and an average diameter of 66 ± 17µm (under dry conditions) and 123 ± 24 µm (under wet conditions). Chemical Imaging analysis pointed out a homogeneous distribution of gellan, gelatin and Insulin-like growth factor-1 within the microsphere matrix. In vitro cell culture tests showed that the microspheres promoted rat cardiac progenitor cells adhesion, and cluster formation. After dynamic suspension culture within an impeller-free bioreactor, cells still adhered to microspheres, spreading their cytoplasm over microsphere surface. Intramyocardial administration of microspheres in a cryoinjury rat model attenuated chamber dilatation, myocardial damage and fibrosis and improved cell homing.Overall, the findings of this study confirm that the produced microspheres display morphological, physicochemical, functional and biological properties potentially adequate for future applications as injectable scaffold for cardiac tissue engineering.


Assuntos
Coração/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Microesferas , Miocárdio/patologia , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Reatores Biológicos , Adesão Celular , Meios de Cultura , Injeções , Insulina/metabolismo , Cinética , Masculino , Microfluídica , Microscopia Eletrônica de Varredura , Infarto do Miocárdio/terapia , Polímeros/química , Ratos , Ratos Wistar , Regeneração , Células-Tronco/citologia , Engenharia Tecidual/métodos
17.
Cells ; 10(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201002

RESUMO

BACKGROUND: Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM. METHODS: We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines. After large-scale production of MSCs in a bioreactor, their efficacy was also evaluated on a human MPM xenograft in mice. RESULTS: MSCs, their lysate and secretome inhibited MPM cell proliferation in vitro with S or G0/G1 arrest of the cell cycle, respectively. MSC lysate induced cell death by apoptosis. The efficacy of MSC was confirmed in vivo by a significant inhibition of tumor growth, similar to that produced by systemic administration of paclitaxel. Interestingly, no tumor progression was observed after the last MSC treatment, while tumors started to grow again after stopping chemotherapeutic treatment. CONCLUSIONS: These data demonstrated for the first time that MSCs, both through paracrine and cell-to-cell interaction mechanisms, induced a significant inhibition of human mesothelioma growth. Since the prognosis for MPM patients is poor and the options of care are limited to chemotherapy, MSCs could provide a potential new therapeutic approach for this malignancy.


Assuntos
Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Mesotelioma Maligno/patologia , Adolescente , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Adulto Jovem
18.
Biomimetics (Basel) ; 5(4)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322426

RESUMO

In recent years, there has been an increasing interest toward the covalent binding of bioactive peptides from extracellular matrix proteins on scaffolds as a promising functionalization strategy in the development of biomimetic matrices for tissue engineering. A totally new approach for scaffold functionalization with peptides is based on Molecular Imprinting technology. In this work, imprinted particles with recognition properties toward laminin and fibronectin bioactive moieties were synthetized and used for the functionalization of biomimetic sponges, which were based on a blend of alginate, gelatin, and elastin. Functionalized sponges underwent a complete morphological, physicochemical, mechanical, functional, and biological characterization. Micrographs of functionalized sponges showed a highly porous structure and a quite homogeneous distribution of imprinted particles on their surface. Infrared and thermal analyses pointed out the presence of interactions between blend components. Biodegradation and mechanical properties appeared adequate for the aimed application. The results of recognition tests showed that the deposition on sponges did not alter the specific recognition and binding behavior of imprinted particles. In vitro biological characterization with cardiac progenitor cells showed that early cell adherence was promoted. In vivo analysis showed that developed scaffolds improved cardiac progenitor cell adhesion and differentiation toward myocardial phenotypes.

19.
Nutrients ; 12(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993022

RESUMO

We recently showed that the long-term in vivo administration of green tea catechin extract (GTE) resulted in hyperdynamic cardiomyocyte contractility. The present study investigates the mechanisms underlying GTE action in comparison to its major component, epigallocatechin-3-gallate (EGCG), given at the equivalent amount that would be in the entirety of GTE. Twenty-six male Wistar rats were given 40 mL/day of a tap water solution with either standardized GTE or pure EGCG for 4 weeks. Cardiomyocytes were then isolated for the study. Cellular bioenergetics was found to be significantly improved in both GTE- and EGCG-fed rats compared to that in controls as shown by measuring the maximal mitochondrial respiration rate and the cellular ATP level. Notably, the improvement of mitochondrial function was associated with increased levels of oxidative phosphorylation complexes, whereas the cellular mitochondrial mass was unchanged. However, only the GTE supplement improved cardiomyocyte mechanics and intracellular calcium dynamics, by lowering the expression of total phospholamban (PLB), which led to an increase of both the phosphorylated-PLB/PLB and the sarco-endoplasmic reticulum calcium ATPase/PLB ratios. Our findings suggest that GTE might be a valuable adjuvant tool for counteracting the occurrence and/or the progression of cardiomyopathies in which mitochondrial dysfunction and alteration of intracellular calcium dynamics constitute early pathogenic factors.


Assuntos
Catequina/farmacologia , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Animais , Proteínas de Ligação ao Cálcio , Catequina/análogos & derivados , Metabolismo Energético , Masculino , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
20.
Mol Imaging Biol ; 22(6): 1469-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802361

RESUMO

Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.


Assuntos
Rastreamento de Células , Compostos Férricos/química , Cardiopatias/terapia , Imagem Molecular , Doenças do Sistema Nervoso/terapia , Células-Tronco/citologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA