Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(50): e2211217119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469788

RESUMO

Most new pathogens of humans and animals arise via switching events from distinct host species. However, our understanding of the evolutionary and ecological drivers of successful host adaptation, expansion, and dissemination are limited. Staphylococcus aureus is a major bacterial pathogen of humans and a leading cause of mastitis in dairy cows worldwide. Here we trace the evolutionary history of bovine S. aureus using a global dataset of 10,254 S. aureus genomes including 1,896 bovine isolates from 32 countries in 6 continents. We identified 7 major contemporary endemic clones of S. aureus causing bovine mastitis around the world and traced them back to 4 independent host-jump events from humans that occurred up to 2,500 y ago. Individual clones emerged and underwent clonal expansion from the mid-19th to late 20th century coinciding with the commercialization and industrialization of dairy farming, and older lineages have become globally distributed via established cattle trade links. Importantly, we identified lineage-dependent differences in the frequency of host transmission events between humans and cows in both directions revealing high risk clones threatening veterinary and human health. Finally, pangenome network analysis revealed that some bovine S. aureus lineages contained distinct sets of bovine-associated genes, consistent with multiple trajectories to host adaptation via gene acquisition. Taken together, we have dissected the evolutionary history of a major endemic pathogen of livestock providing a comprehensive temporal, geographic, and gene-level perspective of its remarkable success.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Feminino , Humanos , Bovinos , Animais , Staphylococcus aureus/genética , Gado/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/genética , Genoma , Especificidade de Hospedeiro
2.
J Neurophysiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863427

RESUMO

Everyday actions like moving the head, walking around and grasping objects are typically self-controlled. This presents a problem when studying the signals encoding such actions because active self-movement is difficult to control experimentally. Available techniques demand repeatable trials, but each action is unique, making it difficult to measure fundamental properties like psychophysical thresholds. We present a novel paradigm that recovers both precision and bias of self-movement signals with minimal constraint on the participant. The paradigm relies on linking image motion to previous self-movement, and two experimental phases to extract the signal encoding the latter. The paradigm takes care of a hidden source of external noise not previously accounted for in techniques that link display motion to self-movement in real time (e.g. virtual reality). We use head rotations as an example of self-movement, and show that the precision of the signals encoding head movement depends on whether they are being used to judge visual motion or auditory motion. We find that perceived motion is slowed during head movement in both cases. The 'non-image' signals encoding active head rotation (motor commands, proprioception and vestibular cues) are therefore biased towards lower speeds and/or displacements. In a second experiment, we trained participants to rotate their heads at different rates and found that the imprecision of the head rotation signal rises proportionally with head speed (Weber's Law). We discuss the findings in terms of the different motion cues used by vision and hearing, and the implications they have for Bayesian models of motion perception.

3.
Brief Bioinform ; 22(2): 1848-1859, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32313939

RESUMO

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled 'Annotation and curation of computational models in biology', organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Guias de Prática Clínica como Assunto , Reprodutibilidade dos Testes
4.
Immunity ; 40(2): 274-88, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530056

RESUMO

Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.


Assuntos
Perfilação da Expressão Gênica , Ativação de Macrófagos/imunologia , Modelos Biológicos , Transcriptoma/genética , Animais , Células Cultivadas , Humanos , Camundongos
5.
PLoS Comput Biol ; 18(7): e1010310, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877685

RESUMO

Graphia is an open-source platform created for the graph-based analysis of the huge amounts of quantitative and qualitative data currently being generated from the study of genomes, genes, proteins metabolites and cells. Core to Graphia's functionality is support for the calculation of correlation matrices from any tabular matrix of continuous or discrete values, whereupon the software is designed to rapidly visualise the often very large graphs that result in 2D or 3D space. Following graph construction, an extensive range of measurement algorithms, routines for graph transformation, and options for the visualisation of node and edge attributes are available, for graph exploration and analysis. Combined, these provide a powerful solution for the interpretation of high-dimensional data from many sources, or data already in the form of a network or equivalent adjacency matrix. Several use cases of Graphia are described, to showcase its wide range of applications in the analysis biological data. Graphia runs on all major desktop operating systems, is extensible through the deployment of plugins and is freely available to download from https://graphia.app/.


Assuntos
Algoritmos , Software
6.
BMC Bioinformatics ; 23(1): 416, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209064

RESUMO

BACKGROUND: The advent of low cost, high throughput DNA sequencing has led to the availability of thousands of complete genome sequences for a wide variety of bacterial species. Examining and interpreting genetic variation on this scale represents a significant challenge to existing methods of data analysis and visualisation. RESULTS: Starting with the output of standard pangenome analysis tools, we describe the generation and analysis of interactive, 3D network graphs to explore the structure of bacterial populations, the distribution of genes across a population, and the syntenic order in which those genes occur, in the new open-source network analysis platform, Graphia. Both the analysis and the visualisation are scalable to datasets of thousands of genome sequences. CONCLUSIONS: We anticipate that the approaches presented here will be of great utility to the microbial research community, allowing faster, more intuitive, and flexible interaction with pangenome datasets, thereby enhancing interpretation of these complex data.


Assuntos
Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
7.
J Acoust Soc Am ; 152(4): 2140, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36319254

RESUMO

Human sound localization in the horizontal dimension is thought to be dominated by binaural cues, particularly interaural time delays, because monaural localization in this dimension is relatively poor. Remaining ambiguities of front versus back and up versus down are distinguished by high-frequency spectral cues generated by the pinna. The experiments in this study show that this account is incomplete. Using binaural listening throughout, the pinna substantially enhanced horizontal discrimination in the frontal hemifield, making discrimination in front better than discrimination at the rear, particularly for directions away from the median plane. Eliminating acoustic effects of the pinna by acoustically bypassing them or low-pass filtering abolished the advantage at the front without affecting the rear. Acoustic measurements revealed a pinna-induced spectral prominence that shifts smoothly in frequency as sounds move from 0° to 90° azimuth. The improved performance is discussed in terms of the monaural and binaural changes induced by the pinna.


Assuntos
Localização de Som , Humanos , Estimulação Acústica , Percepção Auditiva , Orelha Externa , Sinais (Psicologia)
8.
Nucleic Acids Res ; 47(14): 7262-7275, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31305886

RESUMO

RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.


Assuntos
Processamento Alternativo , Gráficos por Computador , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Genoma Humano/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Isoformas de RNA/química , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(20): E3954-E3963, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461481

RESUMO

Most tissue-resident macrophages (Mφs) are believed to be derived prenatally and are assumed to maintain themselves throughout life by self-proliferation. However, in adult mice we identified a progenitor within bone marrow, early pro-B cell/fraction B, that differentiates into tissue Mφs. These Mφ precursors have non-rearranged B-cell receptor genes and coexpress myeloid (GR1, CD11b, and CD16/32) and lymphoid (B220 and CD19) lineage markers. During steady state, these precursors exit bone marrow, losing Gr1, and enter the systemic circulation, seeding the gastrointestinal system as well as pleural and peritoneal cavities but not the brain. While in these tissues, they acquire a transcriptome identical to embryonically derived tissue-resident Mφs. Similarly, these Mφ precursors also enter sites of inflammation, gaining CD115, F4/80, and CD16/32, and become indistinguishable from blood monocyte-derived Mφs. Thus, we have identified a population of cells within the bone marrow early pro-B cell compartment that possess functional plasticity to differentiate into either tissue-resident or inflammatory Mφs, depending on microenvironmental signals. We propose that these precursors represent an additional source of Mφ populations in adult mice during steady state and inflammation.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/imunologia , Células Precursoras de Linfócitos B/fisiologia , Animais , Linfócitos B/fisiologia , Medula Óssea , Células da Medula Óssea/fisiologia , Homeostase/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo
11.
PLoS Genet ; 13(9): e1006997, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28915238

RESUMO

Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.


Assuntos
Perfilação da Expressão Gênica , Genoma , Carneiro Doméstico/genética , Transcriptoma/genética , Animais , Cruzamento , Análise por Conglomerados , Leite , Especificidade de Órgãos/genética
12.
Glia ; 67(7): 1240-1253, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30758077

RESUMO

Growing recognition of the pivotal role microglia play in neurodegenerative and neuroinflammatory disorders has accentuated the need to characterize their function in health and disease. Studies in mouse have applied transcriptome-wide profiling of microglia to reveal key features of microglial ontogeny, functional profile, and phenotypic diversity. While similar, human microglia exhibit clear differences to their mouse counterparts, underlining the need to develop a better understanding of the human microglial profile. On examining published microglia gene signatures, limited consistency was observed between studies. Hence, we sought to derive a core microglia signature of the human central nervous system (CNS), through a comprehensive analysis of existing transcriptomic datasets. Nine datasets derived from cells and tissues, isolated from various regions of the CNS across numerous donors, were subjected independently to an unbiased correlation network analysis. From each dataset, a list of coexpressing genes corresponding to microglia was identified, with 249 genes highly conserved between them. This core signature included known microglial markers, and compared with other signatures provides a gene set specific to microglia in the context of the CNS. The utility of this signature was demonstrated by its use in detecting qualitative and quantitative region-specific alterations in aging and Alzheimer's disease. These analyses highlighted the reactive response of microglia in vulnerable brain regions such as the entorhinal cortex and hippocampus, additionally implicating pathways associated with disease progression. We believe this resource and the analyses described here, will support further investigations to the contribution of human microglia in CNS health and disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Transcriptoma/fisiologia , Doença de Alzheimer/patologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/tendências , Humanos , Camundongos , Microglia/patologia
13.
Basic Res Cardiol ; 114(2): 6, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635789

RESUMO

Cardiac fibroblasts are the major producers of extracellular matrix (ECM) to form infarct scar. We hypothesized that fibroblasts undergo a spectrum of phenotype states over the course of myocardial infarction (MI) from early onset to scar formation. Fibroblasts were isolated from the infarct region of C57BL/6J male mice (3-6 months old, n = 60) at days 0 (no MI control) and 1, 3, or 7 after MI. Whole transcriptome analysis was performed by RNA-sequencing. Of the genes sequenced, 3371 were differentially expressed after MI. Enrichment analysis revealed that MI day 1 fibroblasts displayed pro-inflammatory, leukocyte-recruiting, pro-survival, and anti-migratory phenotype through Tnfrsf9 and CD137 signaling. MI day 3 fibroblasts had a proliferative, pro-fibrotic, and pro-angiogenic profile with elevated Il4ra signaling. MI day 7 fibroblasts showed an anti-angiogenic homeostatic-like myofibroblast profile and with a step-wise increase in Acta2 expression. MI day 7 fibroblasts relied on Pik3r3 signaling to mediate Tgfb1 effects and Fgfr2 to regulate PI3K signaling. In vitro, the day 3 MI fibroblast secretome stimulated angiogenesis, while day 7 MI fibroblast secretome repressed angiogenesis through Thbs1 signaling. Our results reveal novel mechanisms for fibroblasts in expressing pro-inflammatory molecules and regulating angiogenesis following MI.


Assuntos
Inflamação/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Fenótipo , Remodelação Ventricular/fisiologia , Cicatrização/fisiologia
14.
PLoS Biol ; 14(11): e1002579, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27880767

RESUMO

Protein misfolding is common across many neurodegenerative diseases, with misfolded proteins acting as seeds for "prion-like" conversion of normally folded protein to abnormal conformations. A central hypothesis is that misfolded protein accumulation, spread, and distribution are restricted to specific neuronal populations of the central nervous system and thus predict regions of neurodegeneration. We examined this hypothesis using a highly sensitive assay system for detection of misfolded protein seeds in a murine model of prion disease. Misfolded prion protein (PrP) seeds were observed widespread throughout the brain, accumulating in all brain regions examined irrespective of neurodegeneration. Importantly, neither time of exposure nor amount of misfolded protein seeds present determined regions of neurodegeneration. We further demonstrate two distinct microglia responses in prion-infected brains: a novel homeostatic response in all regions and an innate immune response restricted to sites of neurodegeneration. Therefore, accumulation of misfolded prion protein alone does not define targeting of neurodegeneration, which instead results only when misfolded prion protein accompanies a specific innate immune response.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteínas Priônicas/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Microglia/metabolismo , Regulação para Cima
15.
PLoS Biol ; 14(8): e1002530, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509052

RESUMO

There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here, we present a new, freely available modelling framework that includes a biologist-friendly pathway modelling language (mEPN), a simple but sophisticated method to support model parameterisation using available biological information; a stochastic flow algorithm that simulates the dynamics of pathway activity; and a 3-D visualisation engine that aids understanding of the complexities of a system's dynamics. We present example pathway models that illustrate of the power of approach to depict a diverse range of systems.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Biológicos , Transdução de Sinais , Animais , Simulação por Computador , Humanos , Reprodutibilidade dos Testes
16.
PLoS Genet ; 12(2): e1005846, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26891056

RESUMO

Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.


Assuntos
Variação Genética , Metano/metabolismo , Microbiota/fisiologia , Rúmen/microbiologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Archaea/genética , Archaea/metabolismo , Bovinos , Feminino , Masculino , Metagenômica/métodos , Microbiota/genética
17.
Basic Res Cardiol ; 113(4): 26, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29868933

RESUMO

In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3-6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.


Assuntos
Plasticidade Celular , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Plasticidade Celular/genética , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Genótipo , Mediadores da Inflamação/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fagocitose , Fenótipo , Fatores de Tempo , Transcriptoma , Função Ventricular Esquerda/genética , Remodelação Ventricular/genética
18.
J Pathol ; 241(5): 600-613, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28008606

RESUMO

Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand the nature of these disorders. However, data interpretation represents a significant challenge due to a lack of good maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally alter during disease. Here we have sought to derive expression signatures that define the various cell types and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identified, one RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based analyses to identify clusters of robustly co-expressed genes. The biological significance of these clusters was then assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison between analyses, 20 gene signatures were defined. These included expression signatures for hair follicles, glands (sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age; we more accurately define these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also highlighted the over-/under-representation of various cell types in skin diseases, reflecting an influx in immune cells in inflammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the value of this new resource in defining the functional profile of skin cell types and appendages, and in improving the interpretation of disease data. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Regulação da Expressão Gênica , Marcadores Genéticos/genética , Psoríase/genética , Pele/patologia , Transcriptoma , Fatores Etários , Idoso , Glândulas Apócrinas/metabolismo , Glândulas Apócrinas/patologia , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Melanócitos/metabolismo , Melanócitos/patologia , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Psoríase/metabolismo , Psoríase/patologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/patologia , Pele/metabolismo , Glândulas Sudoríparas/metabolismo , Glândulas Sudoríparas/patologia
19.
J Vis ; 18(13): 9, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550620

RESUMO

To estimate object speed with respect to the self, retinal signals must be summed with extraretinal signals that encode the speed of eye and head movement. Prior work has shown that differences in perceptual estimates of object speed based on retinal and oculomotor signals lead to biased percepts such as the Aubert-Fleischl phenomenon (AF), in which moving targets appear slower when pursued. During whole-body movement, additional extraretinal signals, such as those from the vestibular system, may be used to transform object speed estimates from a head-centered to a world-centered reference frame. Here we demonstrate that whole-body pursuit in the form of passive yaw rotation, which stimulates the semicircular canals of the vestibular system, leads to a slowing of perceived object speed similar to the classic oculomotor AF. We find that the magnitude of the vestibular and oculomotor AF is comparable across a range of speeds, despite the different types of input signal involved. This covariation might hint at a common modality-independent mechanism underlying the AF in both cases.


Assuntos
Movimentos Oculares/fisiologia , Percepção de Movimento/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Adulto Jovem
20.
Immunol Rev ; 262(1): 74-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25319328

RESUMO

Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the sets of genes that are associated with specific functions and the mechanisms by which thousands of genes are regulated in response to pathogen challenge. In large datasets, it is possible to identify large sets of genes that are coregulated with the transcription factors that regulate them. They include macrophage-specific genes, interferon-responsive genes, early inflammatory genes, and those associated with endocytosis. Such analyses can also extract macrophage-associated signatures from large cancer tissue datasets. However, cluster analysis provides no support for a signature that distinguishes macrophages from antigen-presenting dendritic cells, nor the classification of macrophage activation states as classical versus alternative, or M1 versus M2. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.


Assuntos
Diferenciação Celular , Ativação de Macrófagos , Sistema Fagocitário Mononuclear/citologia , Sistema Fagocitário Mononuclear/fisiologia , Transcriptoma , Animais , Bases de Dados Factuais , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Redes Reguladoras de Genes , Genômica , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Especificidade de Órgãos , Transdução de Sinais , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA