Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Brain Res ; 1807: 148322, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906226

RESUMO

Zinc is a transition metal that is particularly abundant in the mossy fibers of the hippocampal CA3 area. Despite the large number of studies about the zinc role in mossy fibers, the action of zinc in synaptic mechanisms is only partly known. The use of computational models can be a useful tool for this study. In a previous work, a model was developed to evaluate zinc dynamics at the mossy fiber synaptic cleft, following weak stimulation, insufficient to evoke zinc entry into postsynaptic neurons. For intense stimulation, cleft zinc effluxes must be considered. Therefore, the initial model was extended to include postsynaptic zinc effluxes based on the Goldman-Hodgkin-Katz current equation combined with Hodgkin and Huxley conductance changes. These effluxes occur through different postsynaptic escape routes, namely L- and N-types voltage-dependent calcium channels and NMDA receptors. For that purpose, various stimulations were assumed to induce high concentrations of cleft free zinc, named as intense (10 µM), very intense (100 µM) and extreme (500 µM). It was observed that the main postsynaptic escape routes of cleft zinc are the L-type calcium channels, followed by the NMDA receptor channels and by N-type calcium channels. However, their relative contribution for cleft zinc clearance was relatively small and decreased for higher amounts of zinc, most likely due to the blockade action of zinc in postsynaptic receptors and channels. Therefore, it can be concluded that the larger the zinc release, the more predominant the zinc uptake process will be in the cleft zinc clearance.


Assuntos
Fibras Musgosas Hipocampais , Zinco , Zinco/metabolismo , Sinapses/fisiologia , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia
2.
J Biotechnol ; 264: 43-50, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29106909

RESUMO

Lead is a heavy metal of high impact for the environment as well as for human health, being cause of several diseases. Considering the importance of obtaining an effective treatment for lead removal, a new hybrid material was developed for sorption of Pb2+ from aqueous solution. The effect of pH, temperature, liquid/solid ratio (g/cm3) and lead concentration on the sorption capacity of yeasts chemically modified with cubic silsesquioxane (YS) was analyzed. Additionally, the toxicity of lead on the neuronal activity was also investigated in order to assess whether the damage caused by the Pb2+ ion is reversible or not. The YS is highly promissory as sorbent of lead in high concentrations (100 and 500ppm), reaching high efficiency in short contact times (15min), and at the natural pH (4) of the Pb2+ solution and room temperature. The best sorption obtained was 82% removal and 248mg/g with 500cm3/g sorbent, pH 4, room temperature and contact time of 15min. Besides, such high efficiencies are obtained with low quantities of biosorbent, when compared with other similar materials. The impact of lead on neuronal function was studied by measuring autofluorescence signals, associated with changes in cellular metabolism, at the hippocampal CA3 area in brain slices. In this toxicity tests, the effect of low concentrations of lead (1 and 3µM) on neuronal activity was evaluated. After removal of the lead, the irreversibility of the observed changes can be verified, which suggests the existence of neuronal damages.


Assuntos
Chumbo/metabolismo , Chumbo/toxicidade , Compostos de Organossilício/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Animais , Região CA3 Hipocampal/química , Região CA3 Hipocampal/efeitos dos fármacos , Feminino , Histocitoquímica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA